Fractional Biswas–Milovic Equation in Random Case Study
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ,
- (ii)
- (iii)
- (vi)
- (v)
- If is differentiable, thus
Beta Distribution
- 1.
- The first moment:
- 2.
- The second moment:
3. Description of the Methods
3.1. Unified Solver Method
- (i)
- Rational solutions: (when )
- (ii)
- Trigonometric solutions: (when )
- (iii)
- Hyperbolic solutions: (when )
3.2. The Exp-Expansion Method
- 1.
- At
- 2.
- At
- 3.
- At
- 4.
- At
- 5.
- At
4. Application
4.1. On Solving Equation (21) Using the Unified Solver Method
4.1.1. Rational Solutions
4.1.2. Trigonometric Solutions
4.1.3. Hyperbolic Solutions
4.2. On Solving Equation (21) Using the Exp-Expansion Method
5. Discussion in Some Stochastic Cases under Beta Random Distribution
5.1. Stochastic Solutions of (21) via the Unified Solver Method
5.1.1. Rational Stochastic Solutions
5.1.2. Trigonometric Stochastic Solutions
5.1.3. Hyperbolic Stochastic Solutions
5.2. Stochastic Solutions of (21) via the Exp-Expansion Method
5.3. The Influence of Randomness
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Abdelrahman, M.A.E.; AlKhidhr, H. Closed-form solutions to the conformable space-time fractional simplified MCH equation and time fractional Phi-4 equation. Results Phys. 2020, 18, 103294. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Sohaly, M.A.; Alharbi, Y.F. Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution. Phys. Scr. 2021, 96, 125223. [Google Scholar] [CrossRef]
- Shah, N.A.; Ahmed, I.; Asogwa, K.K.; Zafar, A.A.; Weera, W.; Akgül, A. Numerical study of a nonlinear fractional chaotic Chua’s circuit. Aims Math. 2022, 8, 1636–1655. [Google Scholar] [CrossRef]
- Alshehry, A.S.; Shah, R.; Shah, N.A.; Dassios, I. A reliable technique for solving fractional partial differential equation. Axioms 2022, 11, 574. [Google Scholar] [CrossRef]
- Shang, N.; Zheng, B. Exact solutions for three fractional partial differential equations by the Method. Int. J. Appl. Math. 2013, 43, 1–6. [Google Scholar]
- Tong, B.; He, Y.; Wei, L.; Zhang, X. A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. 2012, 376, 2588–2590. [Google Scholar] [CrossRef]
- Lu, B. The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 2012, 395, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.S.; Sahoo, S. A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada-Kotera equation. Rep. Math. Phys. 2015, 75, 63–72. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. The new wave structures to the fractional ion sound and Langmuir waves equation in plasma physics. Fractal Fract. 2022, 6, 227. [Google Scholar] [CrossRef]
- Bekir, A.; Guner, O.; Cevikel, A.C. The fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, 2013, 426–462. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, K. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana J. Phys. 2013, 81, 377–384. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; Hassan, S.Z.; Alomair, R.A.; Alsaleh, D.M. Fundamental solutions for the conformable time fractional Phi-4 and space-time fractional simplified MCH equations. AIMS Math. 2021, 6, 6555–6568. [Google Scholar] [CrossRef]
- Wang, K.J.; Li, G.; Liu, J.H.; Wang, G.D. Solitary waves of the fractal regularized long-wave equation traveling along an unsmooth boundary. Fractals 2022, 30, 2250008. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Zhu, H.W. A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. Fractals 2021, 29, 2150122. [Google Scholar] [CrossRef]
- Zhu, W.; Xia, Y.; Zhang, B.; Bai, Y. Exact traveling wave solutions and bifurcations of the time-fractional differential equations with applications. Int. J. Bifurc. Chaos 2019, 29, 1950041. [Google Scholar] [CrossRef]
- Li, Z.; Han, T.; Huang, C. Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation. Aip Adv. 2020, 10, 115113. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, K.; Li, M. Exact traveling wave solutions and bifurcation of a generalized (3+1)-dimensional time-fractional Camassa-Holm-Kadomtsev-Petviashvili equation. J. Funct. Spaces 2020, 2020, 4532824. [Google Scholar] [CrossRef]
- Li, Z.; Han, T. Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation. Adv. Contin. Discret. Model. 2020, 2020, 656. [Google Scholar] [CrossRef]
- Biswas, A.; Milovic, D. Bright and dark solitons of the generalized nonlinear Schrödinger’s equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1473–1484. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.E.; AlKhidhr, H. A robust and accurate solver for some nonlinear partial differential equations and tow applications. Phys. Scr. 2020, 95, 065212. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Aminikhad, H.; Moosaei, H.; Hajipour, M. Exact solutions for nonlinear partial differential equations via Exp-function method. Numer. Methods Partial. Differ. Equ. 2009, 26, 1427–1433. [Google Scholar]
- Shakeel, M.; Attaullah; Alaoui, M.K.; Zidan, A.M.; Shah, N.A.; Weera, W. Closed-form solutions in a magneto-electro-elastic circular rod via generalized exp-function method. Mathematics 2022, 10, 3400. [Google Scholar] [CrossRef]
- Rani, A.; Shakeel, M.; Alaoui, M.K.; Zidan, A.M.; Shah, N.A.; Junsawang, P. Application of the exp(-φ(ξ))-expansion method to find the soliton solutions in biomembranes and nerves. Mathematics 2022, 10, 3372. [Google Scholar] [CrossRef]
- Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions; John Wiley & Sons: New York, NY, USA, 1993. [Google Scholar]
- Wang, K.J.; Wang, G.D.; Shi, F. Abundant exact traveling wave solutions to the local fractional (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Fractals 2022. [Google Scholar] [CrossRef]
- Kimeu, J.M. Fractional Calculus: Definitions and Applications; Western Kentucky University: Bowling Green, KY, USA, 2009. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Foroutan, M.; Kumar, D.; Manafian, J.; Hoque, A. New explicit soliton and other solutions for the conformable fractional Biswas–Milovic equation with Kerr and parabolic nonlinearity through an integration scheme. Optik 2018, 170, 190–202. [Google Scholar] [CrossRef]
- Ahmadian, S.; Darvishi, M.T. Fractional version of (1+1)-dimensional Biswas-Milovic equation and its solutions. Optik 2016, 127, 10135–10147. [Google Scholar] [CrossRef]
- Zaidan, L.I.; Darvishi, M.T. Semi-analytical solutions for different kinds of fractional Biswas-Milovic equation. Optik 2017, 136, 403–410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, A. Fractional Biswas–Milovic Equation in Random Case Study. Fractal Fract. 2022, 6, 687. https://doi.org/10.3390/fractalfract6110687
Almutairi A. Fractional Biswas–Milovic Equation in Random Case Study. Fractal and Fractional. 2022; 6(11):687. https://doi.org/10.3390/fractalfract6110687
Chicago/Turabian StyleAlmutairi, Abdulwahab. 2022. "Fractional Biswas–Milovic Equation in Random Case Study" Fractal and Fractional 6, no. 11: 687. https://doi.org/10.3390/fractalfract6110687
APA StyleAlmutairi, A. (2022). Fractional Biswas–Milovic Equation in Random Case Study. Fractal and Fractional, 6(11), 687. https://doi.org/10.3390/fractalfract6110687