On the Application of Multi-Dimensional Laplace Decomposition Method for Solving Singular Fractional Pseudo-Hyperbolic Equations
Abstract
:1. Introduction
2. Some Basic Ideas of the Multi-Dimensional Laplace Transforms (n+1)-DLT
2.1. Existence Condition for the Multi Laplace Transform
2.2. Mittag–Leffler Function (MLf)
3. Singular m-D fractional Pseudo-Hyperbolic Equation
4. Singular -D Coupled Pseudo-Hyperbolic Equation and 3-DLADM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elbeleze, A.A.; Kılıçman, A.; Taib, B.M. Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations. Abstr. Appl. Anal. 2014, 2014, 803902. [Google Scholar] [CrossRef]
- Oderinu, R.A.; Owolabi, J.A.; Taiwo, M. Approximate solutions of linear time-fractional differential equations. J. Math. Comput. Sci. 2023, 29, 60–72. [Google Scholar] [CrossRef]
- Senthilkumar, L.S.; Mahendran, R.; Subburayan, V. A second order convergent initial value method for singularly perturbed system of differential-difference equations of convection diffusion type. J. Math. Comput. Sci. 2022, 25, 73–83. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.A.T. An efficient local meshless approach for solving nonlinear timefractional fourth-order diffusion model. J. King Saud Univ.-Sci. 2021, 33, 101243. [Google Scholar] [CrossRef]
- Ngondiep, E. A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusionreaction equation. J. Math. Comput. Sci. 2022, 26, 222–248. [Google Scholar] [CrossRef]
- Gala, S.; Ragusa, M.A. A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity. Ann. Pol. Math. 2016, 116, 217–228. [Google Scholar] [CrossRef]
- Qi, Q.; Chen, Y.J.; Wang, Q.S. Blow-up phenomena for a pseudo-parabolic system with variable exponents. Electron. J. Qual. Theory Differ. Equ. 2017, 36, 1–9. [Google Scholar] [CrossRef]
- Ragusa, M.A. Commutators of fractional integral operators in Vanishing-Morrey Spaces. J. Glob. Optim. 2008, 40, 361–368. [Google Scholar] [CrossRef]
- Zheng, Y.D.; Fang, Z.B. Qualitative properties for a pseudo-parabolic equation with nonlocal reaction term. Bound. Value Probl. 2019, 2019, 134. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Yang, X.J. Approximate solution of the non–linear diffusion equation of multiple orders. Therm. Sci. 2016, 20, 683–687. [Google Scholar] [CrossRef]
- Yan, S.P.; Zhong, W.P.; Yang, X.J. A novel series method for fractional diffusion equation within Caputo fractional derivative. Therm. Sci. 2016, 20, 695–699. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.R.; Ulness, D.J. Newly Defined Conformable Derivatives. Adv. Dyn. Syst. Appl. 2015, 10, 109–137. [Google Scholar]
- Baleanu, D.; Fernandez, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A.; Akgül, A. On a Fractional Operator Combining Proportional and Classical Differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Mesloub, S. A nonlinear nonlocal mixed problem for a second order pseudo-parabolic equation. J. Math. Anal. Appl. 2006, 316, 189–209. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Hamidi, A.; Shakourifar, M. The solution of coupled Burgers’ equations using Adomian Pade technique. Appl. Math. Comput. 2007, 189, 1034–1047. [Google Scholar] [CrossRef]
- Kaya, D. An explicit solution of coupled viscous Burgers’ equation by the decomposition method. Int. J. Math. Math. Sci. 2001, 27, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Oukouomi Noutchie, S.C. On multi-Laplace transform for solving nonlinear partial differential equations with mixed derivatives. Math. Probl. Eng. 2014, 2014, 267843. [Google Scholar] [CrossRef]
- Cherruault, Y.; Saccomandi, G.; Some, B. New results for convergence of Adomian’s method applied to integral equations. Math Comput. Model. 1992, 16, 85–93. [Google Scholar] [CrossRef]
- Abbaoui, K.; Cherruault, Y. Convergence of Adomian’s method applied to differential equations. Comput. Math. Appl. 1994, 28, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Abbaoui, K.; Cherruault, Y. Convergence of Adomian’s method applied to nonlinear equations. Math. Comput. Model. 1994, 20, 69–73. [Google Scholar] [CrossRef]
- Gadain, H.E. Solving Coupled Pseudo-Parabolic Equation using a Modified double Laplace Decomposition method. Acta Math. Sci. 2018, 38B, 333–346. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I. A note on singular 2-D fractional coupled Burgers’ equation and (3-DLADM). Bound. Value Probl. 2020, 2020, 129. [Google Scholar] [CrossRef]
- Eltayeb, H.; Elgezouli, D.E.; Kılıçman, A.; Bachar, I. Three-dimensional Laplace adomian decomposition method and singular pseudo-parabolic equations. J. Funct. Spaces 2021, 2021, 5563013. [Google Scholar]
- Kılıçman, A.; Sinha, A.K.; Panda, S. On a system of q-modified Laplace transform and its applications. Math. Methods Appl. Sci. 2022, 45, 793–808. [Google Scholar] [CrossRef]
- Özkan, O.; Kurt, A. On triple Laplace transform. Opt. Quant. Electron. 2018, 50, 103. [Google Scholar] [CrossRef]
- Mainardi, F.; Gorenflo, R. On Mittag–Leffler-type functions in fractional evolution processes. J. Comput. Appl. Math. 2000, 118, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Apelblat, A. Differentiation of the Mittag-Leffer Functions with Respect to Parameters in the Laplace Transform Approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eltayeb, H.; Kılıçman, A.; Bachar, I. On the Application of Multi-Dimensional Laplace Decomposition Method for Solving Singular Fractional Pseudo-Hyperbolic Equations. Fractal Fract. 2022, 6, 690. https://doi.org/10.3390/fractalfract6110690
Eltayeb H, Kılıçman A, Bachar I. On the Application of Multi-Dimensional Laplace Decomposition Method for Solving Singular Fractional Pseudo-Hyperbolic Equations. Fractal and Fractional. 2022; 6(11):690. https://doi.org/10.3390/fractalfract6110690
Chicago/Turabian StyleEltayeb, Hassan, Adem Kılıçman, and Imed Bachar. 2022. "On the Application of Multi-Dimensional Laplace Decomposition Method for Solving Singular Fractional Pseudo-Hyperbolic Equations" Fractal and Fractional 6, no. 11: 690. https://doi.org/10.3390/fractalfract6110690
APA StyleEltayeb, H., Kılıçman, A., & Bachar, I. (2022). On the Application of Multi-Dimensional Laplace Decomposition Method for Solving Singular Fractional Pseudo-Hyperbolic Equations. Fractal and Fractional, 6(11), 690. https://doi.org/10.3390/fractalfract6110690