On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I)
Abstract
:1. Introduction
2. Preliminaries
- (i)
- and provides Ω is precompact;
- (ii)
- ker is non-void and ker ;
- (iii)
- ;
- (iv)
- ;
- (v)
- ;
- (vi)
- ;
- (vii)
- if , where and that . Then, we can write
3. New Results
- Step 1:
- We show that . Let us assert that we estimateThus, if , thenFinally, from the hypothesis H5, we infer that , i.e., maps into itself.
- Step 2:
- We show that is continuous in To do this, suppose that , together with such that , we estimateThus, if , thenNow, we obtainThis implies that is continuous.
- Step 3:
- We prove that an estimate ofTo do this, suppose a fixed, arbitrary, , and are a non-empty subset ofFurther, we take Then, we estimateAlsoHenceBy utilizing the uniform continuity of the functions respectively, we obtainThus, takingHence, by utilizing DFPT, we can say that possesses a fixed point in Consequently, the functional integral Equation (1) possesses a solution in .
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agarwal, R.P.; Meehan, M. Fixed Point Theory and Applications; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Alyami, M.A.; Darwish, M.A. On asymptotic stable solutions of a quadratic Erdélyi-Kober fractional functional integral equation with linear modification of the arguments. Chaos Solitons Fractals 2020, 131, 109475. [Google Scholar] [CrossRef]
- Barnett, A.; Greengard, L.; Hagstrom, T. High-order discretization of a stable time-domain integral equation for 3D acoustic scattering. J. Comput. Phys. 2020, 402, 109047. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-y. A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays. Appl. Math. Comput. 2020, 365, 124608. [Google Scholar]
- Tarasov, V.E. Generalized memory: Fractional calculus approach. Fractal Fract. 2018, 2, 23. [Google Scholar] [CrossRef] [Green Version]
- Guerra, R.C. On the solution of a class of integral equations using new weighted convolutions. J. Integral Equ. Appl. 2022, 34, 39–58. [Google Scholar] [CrossRef]
- Jangid, K.; Purohit, S.D.; Agarwal, R. ON Gruss type inequality involving a fractional integral operator with a multi-index Mittag-Leffler function as a kernel. Appl. Math. Inf. Sci. 2022, 16, 269–276. [Google Scholar]
- Mishra, L.N.; Sen, M.; Mohapatra, R.N. On existence theorems for some generalized nonlinear functional-integral equations with applications. Filomat 2017, 31, 2081–2091. [Google Scholar]
- Mishra, L.N.; Pathak, V.K.; Baleanu, D. Approximation of solutions for nonlinear functional integral equations. AIMS Math. 2022, 7, 17486–17506. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Dahmani, Z.; Kieis, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Hamed, Y.S. New Riemann-Liouville fractional-order inclusions for convex functions via integral-valued setting associated with pseudo-order relations. Fractal Fract. 2022, 6, 212. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.; Tan, Z. Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations. J. Math. Anal. Appl. 2015, 427, 307–319. [Google Scholar] [CrossRef]
- Dhage, B.C. Global attractivity results for nonlinear functional integral equations via a Krasnoselskii type fixed point theorem. Nonlinear Anal. Theory Methods Appl. 2009, 70, 2485–2493. [Google Scholar] [CrossRef]
- Aghajani, A.; Mursaleen, M.; Shole Haghighi, A.A. Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness. Acta Math. Sci. 2015, 35, 552–566. [Google Scholar] [CrossRef]
- Javahernia, M.; Razani, A.; Khojasteh, F. Common fixed point of the generalized Mizoguchi-Takahashi’s type contractions. Fixed Point Theory Appl. 2014, 195, 2014. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, B.; Shole Haghighi, A.A.; Khorshidi, M.; De la Sen, M.; Parvaneh, V. Existence of solutions for a system of integral equations using a generalization of Darbo’s fixed point theorem. Mathematics 2020, 8, 492. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Karapinar, E.; O’Regan, D.; Samet, B. Some generalization of Darbo’s theorem and applications to fractional integral equations. Fixed Point Theory Appl. 2016, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bhat, I.A.; Mishra, L.N. Numerical solutions of Volterra integral equations of third kind and its convergence analysis. Symmetry 2022, 14, 2600. [Google Scholar] [CrossRef]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Dhage, B.C. Local asymptotic attractivity for nonlinear quadratic functional integral equations. Nonlinear Anal. Theory Methods Appl. 2009, 70, 1912–1922. [Google Scholar] [CrossRef]
- Dhage, B.C.; Dhage, S.B.; Pathak, H.K. A generalization of Darbo’s fixed point theorem and local attractivity of generalized nonlinear functional integral equations. Differ. Equ. Appl. 2015, 7, 57–77. [Google Scholar] [CrossRef]
- Mishra, L.N.; Agarwal, R.P.; Sen, M. Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdélyi-Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2016, 2, 153–168. [Google Scholar] [CrossRef]
- Mishra, L.N.; Sen, M. On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Appl. Math. Comput. 2016, 285, 174–183. [Google Scholar] [CrossRef]
- Pathak, V.K.; Mishra, L.N. Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations. Mathematics 2022, 10, 2400. [Google Scholar] [CrossRef]
- Arab, R.; Nashine, H.K.; Can, N.H.; Binh, T.T. Solvability of functional-integral equations (fractional order) using measure of noncompactness. Adv. Differ. Equ. 2020, 2020, 12. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Mohiuddine, S.A.; Alotaibi, A.; Deuri, B.C. Generalization of Darbo-type theorem and application on existence of implicit fractional integral equations in tempered sequence spaces. Alex. Eng. J. 2022, 61, 2010–2015. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Das, A.; Alotaibi, A. Existence of solutions for nonlinear integral equations in tempered sequence spaces via generalized Darbo-type theorem. J. Funct. Spaces 2022, 2022, 4527439. [Google Scholar] [CrossRef]
- Das, A.; Rabbani, M.; Mohiuddine, S.A.; Deuri, B.C. Iterative algorithm and theoretical treatment of existence of solution for (k,z)-Riemann–Liouville fractional integral equations. J. Pseudo-Differ. Oper. Appl. 2022, 13, 39. [Google Scholar] [CrossRef]
- Gurtin, M.E.; MacCamy, R.C. Nonlinear age-dependent population dynamics. Arch. Ration. Mech. Anal. 1974, 54, 281–300. [Google Scholar] [CrossRef]
- Metz, J.A.; Diekmann, O. The Dynamics of Physiologically Structured Population; Springer: Berlin, Germany, 1986. [Google Scholar]
- Cushing, J.M. Forced asymptotically periodic solutions of predator-prey systems with or without hereditary effects. SIAM J. Appl. Math. 1976, 30, 665–674. [Google Scholar] [CrossRef]
- Brauer, F. On a nonlinear integral equation of population growth problems. SIAM J. Math. Anal. 1975, 6, 312–317. [Google Scholar] [CrossRef]
- Kuong, Y. Differential Equations with Applications in Population Dynamics; Academic Press: Boston, MA, USA, 1993. [Google Scholar]
- Miller, R.K. On Volterra’s population equations. SIAM J. Appl. Math. 1966, 14, 446–452. [Google Scholar] [CrossRef]
- Thieme, H.R. Density-dependent regulation, spatially distributed populations and their asymptotic speed. J. Math. Biol. 1979, 8, 173–187. [Google Scholar] [CrossRef]
- Thieme, H.R. Mathematics in Population Biology; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Thieme, H.R.; Zhao, X.-Q. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 2003, 195, 430–470. [Google Scholar] [CrossRef]
- Webb, G.F. Theory of Nonlinear Age-Dependent Population Dynamics; Marcel Dekker: New York, NY, USA, 1985. [Google Scholar]
- Zeb, A.; Atangana, A.; Khan, Z.A.; Djillali, S. A robust study of a piecewise fractional order COVID-19 mathematical model. Alex. Eng. J. 2022, 61, 5649–5665. [Google Scholar] [CrossRef]
- Xu, C.; Alhejaili, W.; Saifullah, S.; Khan, A.; Khan, J.; El-Shorbagy, M.A. Analysis of Huanglongbing disease model with novel fractional piecewise approach. Chaos Solitons Fractals 2022, 161, 112316. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Dubey, V.P.; Mohammed, P.O.; Kumar, R.; Singh, J.; Kumar, D.; Baleanu, D. An efficient computational approach for a fractional order biological population model with carrying capacity. Chaos Solitons Fractals 2020, 31, 109880. [Google Scholar] [CrossRef]
- Banaś, J.; Goebel, K. Measures of Non-Compactness in Banach Spaces; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Darbo, G. Punti uniti in trasformazioni a codominio non compatto (Italian). Rend. Sem. Mat. Univ. Padova 1955, 24, 84–92. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Willey & Sons: New York, NY, USA, 1993. [Google Scholar]
- Pathak, H.K. Study on existence of solutions for some nonlinear functional-integral equations with applications. Math. Commun. 2013, 18, 97–107. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Pagnini, G. Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 2012, 15, 117–127. [Google Scholar] [CrossRef]
- Diaz, R.; Pariguan, E. On hypergeometric functions and k-Pochhammer symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
- Kokologiannaki, C.G. Properties and inequalities of generalized k-gamma, beta and zeta function. Int. J. Contemp. Math. Sci. 2010, 5, 653–660. [Google Scholar]
- Kokologiannaki, C.G.; Krasniqi, V. Some properties of k-gamma function. Matematiche 2013, LXVIII, 13–22. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, V.K.; Mishra, L.N.; Mishra, V.N.; Baleanu, D. On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I). Fractal Fract. 2022, 6, 744. https://doi.org/10.3390/fractalfract6120744
Pathak VK, Mishra LN, Mishra VN, Baleanu D. On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I). Fractal and Fractional. 2022; 6(12):744. https://doi.org/10.3390/fractalfract6120744
Chicago/Turabian StylePathak, Vijai Kumar, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, and Dumitru Baleanu. 2022. "On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I)" Fractal and Fractional 6, no. 12: 744. https://doi.org/10.3390/fractalfract6120744
APA StylePathak, V. K., Mishra, L. N., Mishra, V. N., & Baleanu, D. (2022). On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I). Fractal and Fractional, 6(12), 744. https://doi.org/10.3390/fractalfract6120744