Hermite-Hadamard Fractional Inequalities for Differentiable Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, B.; Pu, X.; Huange, F. Fractional Partial Differential Equations and Thier Numerical Solution; World Scientific: Hong Kong, China, 2015. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Dokuyucua, M.A. Caputo and Atangana-Baleanu-Caputo Fractional Derivative Applied to Garden Equation. Turk. J. Sci. 2020, 5, 1–7. [Google Scholar]
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On certain fractional calculus operators and applications in mathematical physics. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Nisar, K.S.; Kumar, D. On the (k, s)-Hilfer-Prabhakar Fractional Derivative with Applications to Mathematical Physics. Front. Phys. 2020, 8, 309. [Google Scholar] [CrossRef]
- Korus, P. Some Hermite-Hadamard type inequalities for functions of generalized convex derivative. Acta Math. Hung. 2021, 165, 463–473. [Google Scholar] [CrossRef]
- Farid, G.; Yousaf, M.; Nonlaopon, K. Fejér-Hadamard type inequalities for (a,h-m)-p-convex functions via extended generalized fractional integrals. Fractal Fract. 2021, 5, 253. [Google Scholar] [CrossRef]
- Ekinci, A.; Özdemir, M.E. Some new integral inequalities via Riemann-Liouville integral operators. Appl. Comput. Math. 2019, 18, 288–295. [Google Scholar]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Zhou, S.-S.; Rashid, S.; Parveen, S.; Akdemir, A.O.; Hammouch, Z. New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators. AIMS Math. 2021, 6, 507–4525. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Seron, P. Ostrowski’s inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Ionescu, N.M. Some remarks on convex functions. Rev. d’analyse Numer. Theor. Approx. Tome 1992, 21, 31–36. [Google Scholar]
- Dragomir, S.S.; Wang, S. A new inequality of Ostrowski’s type in Lp norm and applications to some special means and to some numerical quadrature rules. Indian J. Math. 2008, 40, 299–304. [Google Scholar]
- McShane, E.J. Jensen’s inequality. Bull. Am. Math. Soc. 1937, 43, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Samraiz, M.; Nawaz, F.; Iqbal, S.; Abdeljawad, T.; Rahman, G.; Nisar, K.S. Certain mean-type fractional integral inequalities via different convexities with applications. J. Inequal. Appl. 2020, 2020, 208. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, B. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comp. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171–216. [Google Scholar]
- Lyu, S.L. On the Hermite-Hadamard inequality for convex functions of two variables. Numer. Algebra Control Optim. 2014, 4, 1–8. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Old and new on the Hermite Hadamard inequality. Real Anal. Exch. 2003, 29, 663–683. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Feckan, M.; Zhou, Y. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity. Appl. Anal. 2013, 92, 2241–2253. [Google Scholar] [CrossRef]
- Mihai, M.V.; Awan, M.U.; Noor, M.A.; Kim, J.K. Hermite-Hadamard inequalities and their applications. J. Inequal. Appl. 2018, 2018, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okur, N.; Yalcin, F.B.; Karahan, V. Some Hermite-Hadamard Type Integral Inequalities for Multidimentional Preinvex Functions. Turk. J. Ineq. 2019, 3, 54–63. [Google Scholar]
- Anastassiou, G.A. Fractional Differentiation Inequalities; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for solution of fractional differential equations with generalized Riemann-Liouville fractional derivative. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Liao, Y.; Deng, J.; Wang, J. Riemann-Liouville fractional Hermite-Hadamard inequalities, part I, for twice differentiable geometric-arithmetically s-convex functions. J. Inequal. Appl. 2013, 2013, 517. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Wang, J. Fractional Hermite-Hadamard’s inequalities for (α,m)-logrithmically convex functions. J. Inequal. Appl. 2013, 2013, 364. [Google Scholar] [CrossRef] [Green Version]
- Farid, G.; Naqvi, S.; Javed, A. Hadamard and Fejer-Hadamard inequalities and related results via Caputo fractional derivative. Bull. Math. Anal. Appl. 2017, 9, 16–30. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samraiz, M.; Perveen, Z.; Rahman, G.; Adil Khan, M.; Nisar, K.S. Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal Fract. 2022, 6, 60. https://doi.org/10.3390/fractalfract6020060
Samraiz M, Perveen Z, Rahman G, Adil Khan M, Nisar KS. Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal and Fractional. 2022; 6(2):60. https://doi.org/10.3390/fractalfract6020060
Chicago/Turabian StyleSamraiz, Muhammad, Zahida Perveen, Gauhar Rahman, Muhammad Adil Khan, and Kottakkaran Sooppy Nisar. 2022. "Hermite-Hadamard Fractional Inequalities for Differentiable Functions" Fractal and Fractional 6, no. 2: 60. https://doi.org/10.3390/fractalfract6020060
APA StyleSamraiz, M., Perveen, Z., Rahman, G., Adil Khan, M., & Nisar, K. S. (2022). Hermite-Hadamard Fractional Inequalities for Differentiable Functions. Fractal and Fractional, 6(2), 60. https://doi.org/10.3390/fractalfract6020060