A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity
Abstract
:1. Introduction
2. Gradient and Fractional Hooke’s Elasticity Model
2.1. Gradient Elastic Bar
2.2. A Fractional Extension
3. Gradient and Fractional Kelvin–Voigt Viscoelasticity Model
3.1. Gradient Kelvin–Voigt Viscoelastic Bar
3.2. A Fractional Extension
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aifantis, E.C. On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 1992, 30, 1279–1299. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the gradient approach—Relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 2011, 49, 1367–1377. [Google Scholar] [CrossRef]
- Aifantis, E.C. Internal length gradient (ILG) material mechanics across scales and disciplines. Adv. Appl. Mech. 2016, 49, 1–110. [Google Scholar]
- Aifantis, E.C. Fractional generalizations of gradient mechanics. In Handbook of Fractional Calculus with Applications; Tarasov, V., Ed.; De Gruyter: Berlin, Germany, 2019; Volume 4, pp. 241–262. [Google Scholar]
- Tarasov, V.; Aifantis, E.C. Non-standard extensions of gradient elasticity: Fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simulat. 2015, 22, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.; Aifantis, E.C. On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mech. 2019, 230, 2043–2070. [Google Scholar] [CrossRef] [Green Version]
- Dimosthenis, V. Optimization of Concrete Reinforcement. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2023. (forthcoming). [Google Scholar]
- Michos, K.; Dimosthenis, V.; Parisis, K.; Kouris, L.; Konstantinidis, A.; Aifantis, E.C. Internal length gradient mechanics: From strength of materials and elasticity to plasticity and failure. In International Hazar Scientific Researches Conference; Halilova, I., Amanzholova, A., Eds.; Khazar Univ.: Baku, Azerbaijan, 2021; pp. 585–591. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Maricev, O.I. Fractional Integrals and Derivatives Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Parisis, K. Study of Lattice Defects using Gradient Elasticity and Diffusion-Reaction Models. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2022. (forthcoming). [Google Scholar]
- Parisis, K.; Konstantopoulos, I.; Aifantis, E.C. Non-singular solutions of GradEla models for dislocations: An extension to fractional GradEla. J. Micromech. Mol. Phys. 2018, 03, 1840013. [Google Scholar] [CrossRef]
- Chen, W.; Holm, S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 2004, 115, 1424–1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products 8ed; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal. 2013, 16, 405–430. [Google Scholar] [CrossRef]
- Maricev, O.I. Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables; Ellis Horwood: New York, NY, USA, 1982. [Google Scholar]
- Mathai, A. The H-Function: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Coleman, B.D.; Gurtin, M.E. Thermodynamics with Internal State Variables. J. Chem. Phys. 1967, 47, 597–613. [Google Scholar] [CrossRef]
- Valanis, K.C. The Visoelastic Potential and Its Thermodynamic Foundations. J. Math. Phys. 1968, 47, 262–275. [Google Scholar] [CrossRef]
- Aifantis, E.C. A proposal for continuum with microstructure. Mech. Res. Comm. 1978, 5, 139–145. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the microstructural origin of certain inelastic models. Trans. ASME 1984, 106, 326–330. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity; Imperial College Press: London, UK, 2010. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Fang, J.; Näsholm, S.; Chen, W.; Holm, S. The fractional constitutive models for nonlocal material based on scattering wave equations. Mech. Time-Depend. Mater. 2020, 1–23. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Ng, T.Y. A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. Appl. Math. Model. 2020, 84, 116–136. [Google Scholar] [CrossRef]
- Sumelka, W. Thermoelasticity in the framework of the fractional continuum mechanics. J. Therm. Stress. 2014, 37, 678–706. [Google Scholar] [CrossRef]
- Šilhavý, M. Fractional vector analysis based on invariance requirements (critique of coordinate approaches). Contin. Mech. Thermodyn. 2019, 32, 207–228. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisis, K.; Dimosthenis, V.; Kouris, L.; Konstantinidis, A.; Aifantis, E.C. A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity. Fractal Fract. 2022, 6, 84. https://doi.org/10.3390/fractalfract6020084
Parisis K, Dimosthenis V, Kouris L, Konstantinidis A, Aifantis EC. A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity. Fractal and Fractional. 2022; 6(2):84. https://doi.org/10.3390/fractalfract6020084
Chicago/Turabian StyleParisis, Kostas, Vlasis Dimosthenis, Leonidas Kouris, Avraam Konstantinidis, and Elias C. Aifantis. 2022. "A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity" Fractal and Fractional 6, no. 2: 84. https://doi.org/10.3390/fractalfract6020084
APA StyleParisis, K., Dimosthenis, V., Kouris, L., Konstantinidis, A., & Aifantis, E. C. (2022). A Note on Gradient/Fractional One-Dimensional Elasticity and Viscoelasticity. Fractal and Fractional, 6(2), 84. https://doi.org/10.3390/fractalfract6020084