Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function
Abstract
:1. Introduction and Preliminaries
2. Image Formulas for Marichev–Saigo–Maeda Integral Operators Involving the Product of Srivastava’s Polynomials and Extended Wright Function
3. Image Formulas for Marichev–Saigo–Maeda Differential Operators Involving the Product of Srivastava’s Polynomials and Extended Wright Function
4. Lavoie–Trottier Integral Formulas Involving Product of Srivastava’s Polynomials and Extended Wright Function
5. Oberhettinger Integral Formulas Involving Product of Srivastava’s Polynomials and Extended Wright Function
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S. On an interesting integral involving Gauss’s hypergeometric function. Adv. Comput. Sci. Appl. 2012, 1, 244–246. [Google Scholar]
- Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Kabra, S.; Nagar, H.; Nisar, K.S.; Suthar, D.L. The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function. Appl. Math. Nonlinear Sci. 2020, 2, 593–602. [Google Scholar] [CrossRef]
- Sahin, R.; Yagc, O. Fractional calculus of the extended hypergeometric function. Appl. Math. Nonlinear Sci. 2020, 5, 384–396. [Google Scholar]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Nisar, K.S.; Kumar, D. On (k,s)-Hilfer Prabhakar Fractional Derivative with Applications in Mathematical Physics. Front. Phys. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Ata, E.; Kiymaz, I.O. A study on certain properties of generalized special functions defined by Fox-Wright function. Appl. Math. Nonlinear Sci. 2020, 5, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Suthar, D.L.; Amsalu, H. Certain integrals associated with the generalized Bessel-Maitland function. Appl. Appl. Math. 2017, 12, 1002–1016. [Google Scholar]
- Choi, J.; Agarwal, P.; Mathur, S.; Purohit, S.D. Certain new integral formulas involving the generalized Bessel functions. Bull. Korean Math. Soc. 2014, 51, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Rakha, M.A.; Rathie, A.K.; Chaudhary, M.P.; Ali, S. On A new class of integrals involving hypergeometric function. J. Inequal. Appl. Spec. Funct. 2012, 3, 10–27. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Abdeljawad, T.; Iqbal, S.; Naheed, S. On Certain Fractional Calculus Operators and Their Applications. Phys. Scr. 2020, 95, 115210. [Google Scholar] [CrossRef]
- Saxena, R.K.; Ram, J.; Suthar, D.L. Fractional calculus of generalized Mittag-Leffler functions. J. Indian Acad. Math. 2009, 31, 165–172. [Google Scholar]
- Suthar, D.L.; Andualem, M.; Debalkie, B. A study on generalized multivariable Mittag-Leffler function via generalized fractional calculus operators. J. Math. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Galué, L.; Kalla, S.L.; Kim, T.V. Composition of Erdelyi-Kober fractional operators. Integral Transform. Spec. Funct. 2000, 9, 185–196. [Google Scholar] [CrossRef]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Agarwal, P. Pathway fractional integral formulas involving Bessel function of the first kind. Adv. Stud. Contemp. Math. 2015, 25, 221–231. [Google Scholar]
- Agarwal1, P.; Jain, S.; Agarwal, S.; Nagpal, M. On a new class of integrals involving Bessel functions of the first kind. Commun. Numer. Anal. 2014, 2014, cna-0021. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Rahman, G.; Ghaffar, A.; Mubeen, S. New class of integrals involving extended Mittag-Lefflerer function. J. Fract. Calc. Appl. 2018, 9, 222–231. [Google Scholar]
- Nisar, K.S.; Mondal, S.R. Certain unified integral formulas involving the generalized modified k-Bessel function of firrst kind. Commun. Korean Math. Soc. 2017, 32, 47–53. [Google Scholar]
- Suthar, D.L.; Andualem, M. Integral Formulas Involving Product of Srivastava’s Polynomials and Galu’e type Struve Functions. Kyungpook Math. J. 2019, 59, 725–734. [Google Scholar]
- Suthar, D.L. Composition Formulae for the k-Fractional Calculus Operators Associated with k-Wright Function. J. Math. 2020, 2020, 5471715. [Google Scholar] [CrossRef]
- Jangid, K.; Parmar, R.K.; Agarwal, R.; Purohit, S.D. Fractional calculusand integral transforms of general class of polynomialand incomplete Fox-Wright functions. Adv. Differ. Equ. 2020, 2020, 606. [Google Scholar] [CrossRef]
- Shah, S.A.H.; Mubeen, S. Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer G-functions. AIMS Math. 2021, 6, 11631–11641. [Google Scholar] [CrossRef]
- Shah, S.A.H.; Mubeen, S.; Rahman, G.; Younis, J. Relation of Some Known Functions in terms of Generalized Meijer G-Functions. J. Math. 2021, 2021, 7032459. [Google Scholar] [CrossRef]
- Menaria, N.; Nisar, K.S.; Purohit, S.D. On a new class of integrals involving product of generalized Bessel function of the first kind and general class of polynomials. Acta Univ. Apulensis 2016, 46, 97–105. [Google Scholar]
- Suthar, D.L.; Reddy, G.V.; Tsegaye, T. Unified Integrals Formulas Involving Product of Srivastava’s Polynomials and Generalized Bessel-Maitland Function. Int. J. Sci. Res. 2017, 6, 708–710. [Google Scholar]
- Srivastava, H.M. A contour integral involving Fox’s H-function. Indian J. Math. 1972, 14, 1–6. [Google Scholar]
- El-Shahed, M.; Salem, A. An Extension of Wright Function and Its Properties. J. Math. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 286–293. [Google Scholar] [CrossRef]
- Erdelyi, A. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953. [Google Scholar]
- Marichev, O.I. Volterra equation of Mellin convolution type with a Horn function in the kernel. Izvestiya Akademii Nauk BSSR. Seriya Fiziko-Matematicheskikh Nauk 1974, 1, 128–129. [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods and Special Functions; Rusev, P., Dimovski, I., Kiryakova, V., Eds.; IMI-BAS: Sofia, Bulgaria, 1998; pp. 386–400. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Maricheve, O.I. Fractional integrals and derivatives. In Theory and Application; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Lavoie, J.L.; Trottier, G. On the sum of certain Appell’s series. Ganita 1969, 20, 43–66. [Google Scholar]
- Oberhettinger, F. Tables of Mellin Transform; Springer: New York, NY, USA, 1974. [Google Scholar]
- Kataria, K.K.; Vellaisamy, P. Some fractional calculus results associated with the I-function. Mathematiche (Catania) 2015, 70, 173–190. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naheed, S.; Mubeen, S.; Rahman, G.; Khan, Z.A.; Nisar, K.S. Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function. Fractal Fract. 2022, 6, 93. https://doi.org/10.3390/fractalfract6020093
Naheed S, Mubeen S, Rahman G, Khan ZA, Nisar KS. Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function. Fractal and Fractional. 2022; 6(2):93. https://doi.org/10.3390/fractalfract6020093
Chicago/Turabian StyleNaheed, Saima, Shahid Mubeen, Gauhar Rahman, Zareen A. Khan, and Kottakkaran Sooppy Nisar. 2022. "Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function" Fractal and Fractional 6, no. 2: 93. https://doi.org/10.3390/fractalfract6020093
APA StyleNaheed, S., Mubeen, S., Rahman, G., Khan, Z. A., & Nisar, K. S. (2022). Certain Integral and Differential Formulas Involving the Product of Srivastava’s Polynomials and Extended Wright Function. Fractal and Fractional, 6(2), 93. https://doi.org/10.3390/fractalfract6020093