On Certain Integrals Related to Saran’s Hypergeometric Function FK
Abstract
:1. Motivation and Objectives
2. Some Preliminaries
2.1. Properties of Saran’s -Function
2.2. Fractional Integration by Parts for Function of Several Variables
2.3. Hypergeometric Function of Several Variables
3. The First Integral
- (1)
- The method of using fractional integration by parts is one way of proving Theorem 1. We can, however, adopt a direct approach to establish the integral identity of Theorem 1. In fact, if we first express the function as a triple series, interchange the order of integration and summation and then carry out elementary evaluations, we will arrive at the desired result.
- (2)
- LetIt is easy to verify thatIn addition, since and the polydisc are complete Reinhardt domains of holomorphy, it implies therefore from [34] (p. 22, Observation 5.1) that the region of convergence of is
4. The Second Integral
- (1)
- It may be noticed that the functions involved in the integrand of (33) cannot be directly expressed in terms of simpler functions. For the known reducible cases when the -function reduces to , and , the interested reader may refer to Refs. [6] (p. 4, equation (4.7)), [35] (p. 220, Equations (3.6) and (3.7)), [2] (p. 2, Equations (5) and (7)) and [36] (p. 58, Equation (2.2)).
- (2)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saran, S. Transformations of certain hypergeometric functions of three variables. Acta Math. 1955, 93, 293–312. [Google Scholar] [CrossRef]
- Luo, M.-J.; Raina, R.K. On certain results related to the hypergeometric function FK. J. Math. Anal. Appl. 2021, 504, 125439. [Google Scholar] [CrossRef]
- Krantz, S.G. Function Theory of Several Complex Variables; AMS Chelsea Publishing: Providence, RI, USA, 2001. [Google Scholar]
- Abiodun, R.F.A.; Sharma, B.L. Expansion of certain hypergeometric functions of three variables. Kyungpook Math. J. 1983, 23, 69–84. [Google Scholar]
- Deshpande, V.L. Inequalities for the triple hypergeometric function FK. Jñānābha 1978, 9, 89–93. [Google Scholar]
- Exton, H. A note on the Humbert functions. Jñānābha 1973, 3, 1–5. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions and Applications; John Wiley and Sons: New York, NY, USA, 1976. [Google Scholar]
- Pandey, R.C. On certain hypergeometric transformations. J. Math. Mech. 1963, 12, 113–118. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press: New York, NY, USA; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Hutchinson, T.P. Compound gamma bivariate distributions. Metrika 1981, 28, 263–271. [Google Scholar] [CrossRef]
- Kol, B.; Shir, R. The propagator seagull: General evaluation of a two loop diagram. J. High Energy Phys. 2019, 2019, 83. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, T.P. Four applications of a bivariate Pareto distribution. Biom. J. 1979, 21, 553–563. [Google Scholar] [CrossRef]
- Lee, P.A. The correlated bivariate inverted beta distribution. Biom. J. 1981, 23, 693–703. [Google Scholar] [CrossRef]
- Mazars, M. Statistical physics of the freely jointed chain. Phys. Rev. E 1996, 53, 6297–6319. [Google Scholar] [CrossRef]
- Mazars, M. Canonical partition functions of freely jointed chains. J. Phys. A Math. Gen. 1998, 31, 1949–1964. [Google Scholar] [CrossRef]
- Ong, S.H. Computation of bivariate gamma and inverted beta distribution functions. J. Statist. Comput. Simul. 1995, 51, 153–163. [Google Scholar] [CrossRef]
- Erdélyi, A. Transformation of hypergeometric integrals by means of fractional integration by parts. Q. J. Math. 1939, 10, 176–189. [Google Scholar] [CrossRef]
- Luo, M.-J.; Raina, R.K. Erdélyi-type integrals for generalized hypergeometric functions with integral parameter differences. Integral Transforms Spec. Funct. 2017, 28, 476–487. [Google Scholar] [CrossRef]
- Koepf, W. Hypergeometric Identities. In Hypergeometric Summation, 2nd ed.; Springer: London, UK, 2014; pp. 11–33. [Google Scholar]
- Carlson, B.C. Special Functions of Applied Mathematics; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Joshi, C.M.; Vyas, Y. Extensions of certain classical integrals of Erdélyi for Gauss hypergeometric functions. J. Comput. Appl. Math. 2003, 160, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K. Solution of Abel-type integral equation involving the Appell hypergeometric function. Integral Transforms Spec. Funct. 2010, 21, 515–522. [Google Scholar] [CrossRef]
- Blaschke, P. Asymptotic analysis via calculus of hypergeometric functions. J. Math. Anal. Appl. 2016, 433, 1790–1820. [Google Scholar] [CrossRef]
- Manocha, H.L. Integral expressions for Appell’s functions F1 and F2. Riv. Mat. Univ. Parma 1967, 2, 235–242. [Google Scholar]
- Manocha, H.L.; Sharma, H.R. New integral expressions for functions of three variables. Bull. Math. Soc. Sci. Math. Roum. 1969, 13, 231–244. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press: New York, NY, USA; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chandel, R.C.S. Fractional integration and integral representations of certain generalized hypergeometric functions of several variables. Jñānābha 1971, 1, 45–56. [Google Scholar]
- Koschmieder, L. Integrale mit hypergeometrischen Integranden. Acta Math. 1947, 79, 241–254. [Google Scholar] [CrossRef]
- Koschmieder, L. Verallgemeinerte Ableitungen und hypergeometrische Funktionen. Monatsh. Math. 1949, 53, 169–183. [Google Scholar] [CrossRef]
- Mittal, K.C. Integral representation of Appell’s functions. Kyungpook Math. J. 1977, 17, 101–107. [Google Scholar]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Zając, S. The Hadamard multiplication theorem in several complex variables. Complex Var. Elliptic Equ. 2017, 62, 1–26. [Google Scholar] [CrossRef]
- Lal, C.; Saran, S. Bilinear generating functions of Lauricella and Saran’s function. Glas. Mat. 1973, 8, 215–223. [Google Scholar]
- Singh, O.V.; Bhatt, R.C. Certain reducible cases of triple hypergeometric functions. Jñānābha 1990, 20, 57–60. [Google Scholar]
- Pérez-Marco, R. Local monodromy formula of Hadamard products. arXiv 2020, arXiv:2011.10497v1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Xu, M.; Raina, R.K. On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal Fract. 2022, 6, 155. https://doi.org/10.3390/fractalfract6030155
Luo M, Xu M, Raina RK. On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal and Fractional. 2022; 6(3):155. https://doi.org/10.3390/fractalfract6030155
Chicago/Turabian StyleLuo, Minjie, Minghui Xu, and Ravinder Krishna Raina. 2022. "On Certain Integrals Related to Saran’s Hypergeometric Function FK" Fractal and Fractional 6, no. 3: 155. https://doi.org/10.3390/fractalfract6030155
APA StyleLuo, M., Xu, M., & Raina, R. K. (2022). On Certain Integrals Related to Saran’s Hypergeometric Function FK. Fractal and Fractional, 6(3), 155. https://doi.org/10.3390/fractalfract6030155