Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models
Abstract
:1. Introduction
- We solve the interval estimation problem for the fourth-order SEIR epidemic model subject to disturbances and uncertainties. The estimation procedure is designed based on the observability matrix to relax the strong cooperativity assumption for designing traditional interval observers. Finite-time convergence and tight initialization problems are analyzed separately to improve the performance of the developed method;
- We introduce a novel interval state estimation method using an observability matrix and past input-output values without designing an observer gain that can alleviate some limitations of traditional interval observer design. For example, the system being cooperative/non-negative [20,34,35,36,37,38,39] and the probable inflation existence of the estimation error at the steady-state are avoided.
- We consider the fourth compartment of the SEIR model by following the incubation stage compared with the interval estimator designed for the SIR model in [40]. Moreover, ref. [40] considered continuous-time dynamics, whereas we concentrate on the discrete time, which has grown in prominence through past years [41,42]. In addition, ref. [40] assumed that exact values of (new infectives per day) and the upper and lower bound of ℘ (transmission rate) are available. In our case, only noisy values of susceptible people S and probable bounds on uncertain are available, while the bounds on ℘ are not given by PHS. Hence, our method is more applicable in reality as ℘ is highly uncertain and cannot be obtained directly from biological consideration compared with [43,44]. Furthermore, its bounds are usually unavailable for such models [14].
2. Preliminaries Results
2.1. Notations
2.2. Interval Analysis
3. Problem Statement
4. Interval Estimator Design for SEIR Model
4.1. Interval State Estimator Design
4.1.1. Bounds on the Uncertain Birth and Death Rate
4.1.2. Bounds on Uncertain Input
4.1.3. Bounds on Measurement Noise Vector
4.2. Interval Prediction for
4.3. Finite-Time Convergence
5. Simulation Results
5.1. Example 1
5.2. Example 2: Ebola Outbreak in West Africa
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). HIV/AIDS; Global Health Observatory (GHO) Data; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/data/gho/data/themes/hiv-aids (accessed on 6 April 2022).
- World Health Organization. Seasonal Influenza; Global Health Observatory (GHO) Data; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 6 April 2022).
- Dukic, V.; Lopes, H.F.; Polson, N.G. Tracking epidemics with Google flu trends data and a state-space SEIR model. J. Am. Stat. Assoc. 2012, 107, 1410–1426. [Google Scholar] [CrossRef]
- Fallas-Monge, J.J.; Chavarria-Molina, J.; Alpizar-Brenes, G. Combinatorial metaheuristics applied to infectious disease models. In Proceedings of the 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI), San Jose, Costa Rica, 9–11 November 2016; pp. 1–6. [Google Scholar]
- Grassly, N.C.; Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 2008, 6, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.H.; Craft, D.L.; Wein, L.M. Emergency response to a smallpox attack: The case for mass vaccination. Proc. Natl. Acad. Sci. USA 2002, 99, 10935–10940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeling, M.J.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1927, 115, 700–772. [Google Scholar]
- Feng, Z.; Huang, W.; Castillo-Chavez, C. On the role of variable latent periods in mathematical models for tuberculosis. J. Dyn. Differ. Equs. 2001, 13, 425–452. [Google Scholar] [CrossRef]
- Castillo-Chavez, C.; Cooke, K.; Huang, W.; Levin, S.A. On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS). J. Math. Biol. 1989, 27, 373–398. [Google Scholar] [CrossRef]
- Hethcote, H.W. The mathematics of infectious diseases. SIAM Rev. 2000, 42, 599–653. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Quesada, S.; la Sen, M.D.; Agarwal, R.; Ibeas, A. An observer-based vaccination control law for an SEIR epidemic model based on feedback linearization techniques for nonlinear systems. Adv. Differ. Equs. 2012, 161, 1–32. [Google Scholar] [CrossRef]
- Alonso-Quesada, S.; la Sen, M.D.; Ibeas, A. On the discretization and control of an SEIR epidemic model with a periodic impulsive vaccination. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 247–274. [Google Scholar] [CrossRef]
- Degue, K.H.; Efimov, D.; Iggidr, A. Interval estimation of sequestered infected erythrocytes in malaria patients. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 1141–1145. [Google Scholar]
- Efimov, D.; Perruquetti, W.; Raissi, T.; Zolghadri, A. On interval observer design for time-invariant discrete-time systems. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 2651–2656. [Google Scholar]
- Efimov, D.; Polyakov, A.; Fridman, E.; Perruquetti, W.; Richard, J.-P. Delay-dependent positivity: Application to interval observers. In Proceedings of the 2015 European Control Conference (ECC), Linz, Austria, 15–17 July 2015; pp. 2074–2078. [Google Scholar]
- Efimov, D.; Raissi, T.; Zolghadri, A. Control of nonlinear and LPV systems: Interval observer-based framework. IEEE Trans. Autom. Control 2013, 58, 773–778. [Google Scholar] [CrossRef] [Green Version]
- Gouze, J.-L.; Rapaport, A.; Hadj-Sadok, M.Z. Interval observers for uncertain biological systems. Ecol. Model. 2000, 133, 45–56. [Google Scholar] [CrossRef]
- Gucik-Derigny, D.; Raissi, T.; Zolghadri, A. A note on interval observer design for unknown input estimation. Int. J. Control 2016, 89, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Mazenc, F.; Dinh, T.N.; Niculescu, S.I. Interval observers for discrete-time systems. Int. J. Robust Nonlinear Control 2014, 24, 2867–2890. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Xie, W.; Zhang, L.; Liu, L.-W. Design and applications of interval observers for uncertain dynamical systems. IET Circuits Devices Syst. 2020, 14, 721–740. [Google Scholar] [CrossRef]
- Khan, A.; Xie, W.; Bo, Z.; Liu, L.-W. A survey of interval observers design methods and implementation for uncertain systems. J. Frankl. Inst. 2021, 358, 3077–3126. [Google Scholar] [CrossRef]
- Degue, K.H.; Efimov, D.; Richard, J.-P. Stabilization of linear impulsive systems under dwell-time constraints: Interval observer-based framework. Eur. J. Control. 2018, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Moisan, M.; Bernard, O. Interval observers for non monotone systems. Application to bioprocess models. In Proceedings of the IFAC Proceedings Volumes, Puebla, Mexico, 14–25 November 2005; Volume 38, pp. 43–48. [Google Scholar]
- Rotondo, D.; Cristofaro, A.; Johansen, T.A.; Nejjari, F.; Puig, V. State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers. Int. J. Control 2018, 91, 1944–1961. [Google Scholar] [CrossRef] [Green Version]
- Yousfi, B.; Raissi, T.; Amairi, M.; Gucik-Derigny, D.; Aoun, M. Robust state estimation for singularly perturbed systems. Int. J. Control 2017, 90, 566–579. [Google Scholar] [CrossRef]
- Degue, K.H.; Ny, J.L. Estimation and outbreak detection with interval observers for uncertain discrete-time SEIR epidemic models. Int. J. Control 2020, 93, 2707–2718. [Google Scholar] [CrossRef]
- Degue, K.H.; Ny, J.L. An interval observer for discrete-time SEIR epidemic models. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 5934–5939. [Google Scholar]
- Efimov, D.; Raissi, T. Design of interval observers for uncertain dynamical systems. Autom. Remote Control 2016, 77, 191–225. [Google Scholar] [CrossRef]
- Mazenc, F.; Bernard, O. Asymptotically stable interval observers for planar systems with complex poles. IEEE Trans. Autom. Control 2009, 55, 523–527. [Google Scholar] [CrossRef]
- Mazenc, F.; Bernard, O. Interval observers for linear time-invariant systems with disturbances. Automatica 2011, 47, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Diaby, M.; Iggidr, A.; Sy, M. Observer design for a schistosomiasis model. Math. Biosci. 2015, 269, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, E.I.; Marzat, J.; Raissi, T. Interval observer design for unknown input estimation of linear time-invariant discrete-time systems. IFAC-PapersOnLine 2017, 50, 4021–4026. [Google Scholar] [CrossRef]
- Efimov, D.; Raissi, T.; Chebotarev, S.; Zolghadri, A. Interval state observer for nonlinear time varying systems. Automatica 2013, 49, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Chebotarev, S.; Efimov, D.; Raissi, T.; Zolghadri, A. Interval observers for continuous-time LPV systems with L1/L2 performance. Automatica 2015, 58, 82–89. [Google Scholar] [CrossRef]
- Guo, S.; Zhu, F. Interval observer design for discrete-time switched system. IFAC-PapersOnLine 2017, 50, 5073–5078. [Google Scholar] [CrossRef]
- Khan, A.; Xie, W.; Zhang, L. Interval state estimation for linear time-varying (LTV) discrete-time systems subject to component faults and uncertainties. Arch. Control Sci. 2019, 29, 289–305. [Google Scholar]
- Liu, L.-W.; Xie, W.; Khan, A.; Zhang, L.-W. Finite-time functional interval observer for linear systems with uncertainties. IET Control Theory Appl. 2020, 14, 2868–2878. [Google Scholar] [CrossRef]
- Yi, Z.; Xie, W.; Khan, A.; Xu, B. Fault detection and diagnosis for a class of linear time-varying (LTV) discrete-time uncertain systems using interval observers. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 4124–4128. [Google Scholar]
- Bliman, P.-A.; Barros, B.D.A. Interval observers for SIR epidemic models subject to uncertain seasonality. In Proceedings of the International Symposium on Positive Systems, Fukuoka, Japan, 4–5 November 2016; pp. 31–39. [Google Scholar]
- Hu, Z.; Teng, Z.; Jiang, H. Stability analysis in a class of discrete SIRS epidemic models. Nonlinear Anal. Real World Appl. 2012, 13, 2017–2033. [Google Scholar] [CrossRef]
- Mickens, R.E. Numerical integration of population models satisfying conservation laws: NSFD methods. J. Biol. Dyn. 2007, 1, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Bichara, D.; Cozic, N.; Iggidr, A. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients. Math. Biosci. Eng. 2014, 11, 741–759. [Google Scholar] [CrossRef]
- Hooker, G.; Ellner, S.P.; Roditi, L.D.V.; Earn, D.J. Parameterizing state–space models for infectious disease dynamics by generalized profiling: Measles in Ontario. J. R. Soc. Interface 2011, 8, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.E. Interval Analysis; Prentice-Hall: Hoboken, NJ, USA, 1966. [Google Scholar]
- Ibeas, A.; Sen, M.D.; Alonso-Quesada, S.; Zamani, I. Stability analysis and observer design for discrete-time SEIR epidemic models. Adv. Differ. Equs. 2015, 2015, 122. [Google Scholar] [CrossRef] [Green Version]
- Rachah, A. Analysis, simulation and optimal control of a SEIR model for Ebola virus with demographic effects. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018, 67, 179–197. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Bai, X.; Ilyas, M.; Rauf, A.; Xie, W.; Yan, P.; Zhang, B. Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models. Fractal Fract. 2022, 6, 213. https://doi.org/10.3390/fractalfract6040213
Khan A, Bai X, Ilyas M, Rauf A, Xie W, Yan P, Zhang B. Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models. Fractal and Fractional. 2022; 6(4):213. https://doi.org/10.3390/fractalfract6040213
Chicago/Turabian StyleKhan, Awais, Xiaoshan Bai, Muhammad Ilyas, Arshad Rauf, Wei Xie, Peiguang Yan, and Bo Zhang. 2022. "Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models" Fractal and Fractional 6, no. 4: 213. https://doi.org/10.3390/fractalfract6040213
APA StyleKhan, A., Bai, X., Ilyas, M., Rauf, A., Xie, W., Yan, P., & Zhang, B. (2022). Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models. Fractal and Fractional, 6(4), 213. https://doi.org/10.3390/fractalfract6040213