Stability Analysis for a Fractional-Order Coupled FitzHugh–Nagumo-Type Neuronal Model
Abstract
:1. Introduction
2. Preliminaries
- All the roots of the characteristic Equation (2) are in the open left half-plane, regardless of the fractional orders and , if and only if the following inequalities are satisfied:
- The characteristic Equation (2) has a root in the open right half-plane, regardless of the fractional orders and , if and only if either one of the following conditions is satisfied:
- i.
- ;
- ii.
- and ;
- iii.
- , and .
- i.
- The characteristic Equation (2) has a pair of complex conjugated roots on the imaginary axis of the complex plane if and only if .
- ii.
- iii.
3. Fractional-Order Coupled FithHugh–Nagumo-Type Neuronal Model
3.1. Existence of Equilibrium States
- Case 1:
- Case 2:
3.2. Stability of Equilibrium States
- asymptotically stable, regardless of the fractional orders and , if and only if ;
- unstable, regardless of the fractional orders and , if and only if .
- if , the trivial equilibrium state is asymptotically stable, regardless of the fractional orders and ;
- if , the trivial equilibrium state is unstable, regardless of the fractional orders and ;
- if , the stability of the trivial equilibrium depends on the fractional orders and , as seen from Proposition 4.
4. Numerical Simulations
4.1. Case 1: A Unique Equilibrium State
4.2. Case 2: Five Coexisting Equilibrium States
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cottone, G.; Paola, M.D.; Santoro, R. A novel exact representation of stationary colored Gaussian processes (fractional differential approach). J. Phys. A Math. Theor. 2010, 43, 085002. [Google Scholar] [CrossRef]
- Engheia, N. On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag. Mag. 1997, 39, 35–46. [Google Scholar] [CrossRef]
- Henry, B.; Wearne, S. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 2002, 62, 870–887. [Google Scholar] [CrossRef] [Green Version]
- Heymans, N.; Bauwens, J.C. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheologica Acta 1994, 33, 210–219. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Relaxation-Oscillation and Fractional Phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Du, M.; Wang, Z.; Hu, H. Measuring memory with the order of fractional derivative. Sci. Rep. 2013, 3, 3431. [Google Scholar] [CrossRef]
- Anastasio, T. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybernet. 1994, 72, 69–79. [Google Scholar] [CrossRef]
- Lundstrom, B.; Higgs, M.; Spain, W.; Fairhall, A. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef]
- Weinberg, S.H. Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model. PLoS ONE 2015, 10, e0126629. [Google Scholar] [CrossRef]
- Drapaca, C. Fractional calculus in neuronal electromechanics. J. Mech. Mater. Struct. 2016, 12, 35–55. [Google Scholar] [CrossRef]
- Grevesse, T.; Dabiri, B.E.; Parker, K.K.; Gabriele, S. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury. Sci. Rep. 2015, 5, 9475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teka, W.; Marinov, T.M.; Santamaria, F. Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 2014, 10, e1003526. [Google Scholar] [CrossRef] [PubMed]
- Jun, D.; Guang-Jun, Z.; Yong, X.; Hong, Y.; Jue, W. Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model. Cogn. Neurodyn. 2014, 8, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaslik, E. Analysis of two-and three-dimensional fractional-order Hindmarsh-Rose type neuronal models. Fract. Calc. Appl. Anal. 2017, 20, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Brandibur, O.; Kaslik, E. Stability properties of a two-dimensional system involving one Caputo derivative and applications to the investigation of a fractional-order Morris-Lecar neuronal model. Nonlinear Dyn. 2017, 90, 2371–2386. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Wang, Z. Abundant bursting patterns of a fractional-order Morris–Lecar neuron model. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1956–1969. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Mondal, A.; Teka, W.W. Fractional-order excitable neural system with bidirectional coupling. Nonlinear Dyn. 2017, 87, 2219–2233. [Google Scholar] [CrossRef]
- Brandibur, O.; Kaslik, E. Stability of two-component incommensurate fractional-order systems and applications to the investigation of a FitzHugh-Nagumo neuronal model. Math. Methods Appl. Sci. 2018, 41, 7182–7194. [Google Scholar] [CrossRef] [Green Version]
- Teka, W.; Stockton, D.; Santamaria, F. Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model. PLoS Comput. Biol. 2016, 12, e1004776. [Google Scholar] [CrossRef]
- Majhi, S.; Bera, B.K.; Ghosh, D.; Perc, M. Chimera states in neuronal networks: A review. Phys. Life Rev. 2019, 28, 100–121. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Q.; Cheng, H.; Li, H.; Xie, F.; Yang, J. Spiral wave chimera in two-dimensional nonlocally coupled Fitzhugh–Nagumo systems. Chaos Solitons Fractals 2018, 114, 394–399. [Google Scholar] [CrossRef]
- Schmidt, A.; Kasimatis, T.; Hizanidis, J.; Provata, A.; Hövel, P. Chimera patterns in two-dimensional networks of coupled neurons. Phys. Rev. E 2017, 95, 032224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eydam, S.; Franović, I.; Wolfrum, M. Leap-frog patterns in systems of two coupled FitzHugh-Nagumo units. Phys. Rev. E 2019, 99, 042207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X. Complicated dynamics of a ring of nonidentical FitzHugh–Nagumo neurons with delayed couplings. Nonlinear Dyn. 2017, 87, 2395–2406. [Google Scholar] [CrossRef]
- Lavrova, S.; Kudryashov, N.; Sinelshchikov, D. On some properties of the coupled Fitzhugh-Nagumo equations. J. Phys. Conf. Ser. 2019, 1205, 012035. [Google Scholar] [CrossRef] [Green Version]
- Mondal, A.; Sharma, S.K.; Upadhyay, R.K.; Mondal, A. Firing activities of a fractional-order FitzHugh-Rinzel bursting neuron model and its coupled dynamics. Sci. Rep. 2019, 9, 15721. [Google Scholar] [CrossRef]
- Li, X.; Han, C.; Wang, Y. Novel Patterns in Fractional-in-Space Nonlinear Coupled FitzHugh–Nagumo Models with Riesz Fractional Derivative. Fractal Fract. 2022, 6, 136. [Google Scholar] [CrossRef]
- Ramadoss, J.; Aghababaei, S.; Parastesh, F.; Rajagopal, K.; Jafari, S.; Hussain, I. Chimera state in the network of fractional-order fitzhugh–nagumo neurons. Complexity 2021, 2021, 2437737. [Google Scholar] [CrossRef]
- Momani, S.; Freihat, A.; Al-Smadi, M. Analytical study of fractional-order multiple chaotic FitzHugh-Nagumo neurons model using multistep generalized differential transform method. Abstract Appl. Anal. 2014, 2014, 276279. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and breach Science Publishers: Yverdon Yverdon-les-Bains, Switzerland, 1993; Volume 1. [Google Scholar]
- Li, C.; Zhang, F. A survey on the stability of fractional differential equations. Eur. Phys. J. Special Top. 2011, 193, 27–47. [Google Scholar] [CrossRef]
- Rivero, M.; Rogosin, S.V.; Tenreiro Machado, J.A.; Trujillo, J.J. Stability of fractional order systems. Math. Prob. Eng. 2013, 2013, 356215. [Google Scholar] [CrossRef]
- Sabatier, J.; Farges, C. On stability of commensurate fractional order systems. Int. J. Bifurc. Chaos 2012, 22, 1250084. [Google Scholar] [CrossRef]
- Matignon, D. Stability Results For Fractional Differential Equations With Applications To Control Processing. In Proceedings of the Computational Engineering in Systems Applications, Lille, France, 9–12 July 1996; pp. 963–968. [Google Scholar]
- Cong, N.; Tuan, H.; Trinh, H. On asymptotic properties of solutions to fractional differential equations. J. Math. Anal. Appl. 2020, 484, 123759. [Google Scholar] [CrossRef] [Green Version]
- Brandibur, O.; Kaslik, E. Exact stability and instability regions for two-dimensional linear autonomous systems of fractional-order differential equations. Fract. Calc. Appl. Anal. 2021, 24, 225–253. [Google Scholar] [CrossRef]
- Brandibur, O.; Garrappa, R.; Kaslik, E. Stability of Systems of Fractional-Order Differential Equations with Caputo Derivatives. Mathematics 2021, 9, 914. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Scientific Publishers: Cambridge, MA, USA, 2009. [Google Scholar]
- Brandibur, O.; Kaslik, E. Stability analysis of multi-term fractional-differential equations with three fractional derivatives. J. Math. Anal. Appl. 2021, 495, 124751. [Google Scholar] [CrossRef]
- Doetsch, G. Introduction to the Theory and Application of the Laplace Transformation; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 826–839. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.; Freed, A. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
Equilibrium | Stability | |
---|---|---|
asympt. stable | ||
asympt. stable | ||
unstable | ||
unstable | ||
depends on |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandibur, O.; Kaslik, E. Stability Analysis for a Fractional-Order Coupled FitzHugh–Nagumo-Type Neuronal Model. Fractal Fract. 2022, 6, 257. https://doi.org/10.3390/fractalfract6050257
Brandibur O, Kaslik E. Stability Analysis for a Fractional-Order Coupled FitzHugh–Nagumo-Type Neuronal Model. Fractal and Fractional. 2022; 6(5):257. https://doi.org/10.3390/fractalfract6050257
Chicago/Turabian StyleBrandibur, Oana, and Eva Kaslik. 2022. "Stability Analysis for a Fractional-Order Coupled FitzHugh–Nagumo-Type Neuronal Model" Fractal and Fractional 6, no. 5: 257. https://doi.org/10.3390/fractalfract6050257
APA StyleBrandibur, O., & Kaslik, E. (2022). Stability Analysis for a Fractional-Order Coupled FitzHugh–Nagumo-Type Neuronal Model. Fractal and Fractional, 6(5), 257. https://doi.org/10.3390/fractalfract6050257