Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Uniform Stability
3.2. Existence and Uniqueness
4. Numerical Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seow, M.J.; Asari, V.K.; Livingston, A. Learning as a nonlinear line of attraction in a recurrent neural network. Neural Comput. Appl. 2010, 19, 337–342. [Google Scholar] [CrossRef]
- Ding, Z.; Zeng, Z.; Wang, L. Robust finite-time stabilization of fractional-order neural networks with discontinuous and continuous activation functions under uncertainty. IEEE Trans. Neural Network. 2018, 29, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Hei, X.; Chen, L. Finite-time stability of fractional-order neural networks with delay. Commun. Theor. Phys. 2013, 60, 189–193. [Google Scholar] [CrossRef]
- Chen, L.; He, Y.; Wu, R.; Chai, Y.; Yin, L. Robust finite time stability of fractional-order linear delayed systems with nonlinear perturbations. Int. J. Control Autom. Syst. 2014, 12, 697–702. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, H.; Li, W. Stabilisation of stochastic delayed systems with Lévy noise on networks via periodically intermittent control. Int. J. Control 2020, 93, 505–518. [Google Scholar] [CrossRef]
- Lundstrom, B.; Higgs, M.; Spain, W.; Fairhall, A. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 2008, 11, 1335–1342. [Google Scholar] [CrossRef]
- Hu, B.X.; Song, Q.K.; Zhao, Z.J. Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach. Appl. Math. Comput. 2020, 373, 125033. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, M.; Li, W. Intermittent delay stabilization of complex-valued stochastic complex network. Inform. Sci. 2021, 577, 379–397. [Google Scholar] [CrossRef]
- Syed, M.; Hymavathi, M.; Senan, S.; Shekher, V.; Arik, S. Global asymptotic aynchronization of impulsive fractional-order complex-valued memristor-based neural networks with time varying delays. Commun. Nonlinear Sci. 2019, 78, 104869. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Zeng, Z. Global asymptotic stability and adaptive ultimate mittag—Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans. Syst. Man Cybern. Syst. 2018, 49, 2519–2535. [Google Scholar] [CrossRef]
- Nitta, T. Solving the XOR problem and the detection of symmetry using a single complex-valued neuron. Neural Netw. 2003, 16, 1101–1105. [Google Scholar] [CrossRef]
- Huang, S.; Qiao, Y.; Wen, G. Real and Complex Clifford Analysis; Springer: New York, NY, USA, 2006. [Google Scholar]
- Rudin, W. Real and Complex Analysis; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Syed, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. 2019, 83, 105088. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.; Stojanovic, V. Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn. 2021, 103, 1733–1755. [Google Scholar] [CrossRef]
- Sakthivel, R.; Luo, J. Asymptotic stability of impulsive stochastic partial differential equations with infinite delays. J. Math. Anal. Appl. 2009, 356, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, X.; Zhao, Y. Exponential stability of a class of nonlinear systems via fixed point theory. Nonlinear Anal. 2020, 196, 111784. [Google Scholar] [CrossRef]
- Yang, T.; Yang, L.; Wu, C.; Chua, L. Fuzzy cellular neural networks: Applications. In Proceedings of the IEEE International Workshop on Cellular Neural Networks and Applications, Seville, Spain, 24–26 June 1996; pp. 225–230. [Google Scholar]
- Ratnavelu, K.; Kalpana, M.; Balasubramaniam, P.; Wong, K.; Raveendran, P. Image encryption method based on chaotic fuzzy cellular neural networks. Signal Process. 2017, 140, 87–96. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Li, W. Synchronization of random coupling delayed complex networks with random and adaptive coupling strength. Nonlinear Dynam. 2019, 96, 2393–2412. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, J.A.; Tang, Y. Robust stability for genetic regulatory networks with linear fractional uncertainties. Commun. Nonlinear Sci. 2012, 17, 1753–1765. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Li, W. Novel aperiodically intermittent stability criteria for Markovian switching stochastic delayed coupled systems. Chaos 2018, 28, 113117. [Google Scholar] [CrossRef]
- Kao, Y.; Shi, L.; Xie, J.; Karimi, H. Global exponential stability of delayed markovian jump fuzzy cellular neural networks with generally incomplete transition probability. Fuzzy Set. Syst. 2015, 63, 18–30. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, S. Delay-dependent stability criteria for genetic regulatory networks with time-varying delays and nonlinear disturbance. Commun. Nonlinear Sci. 2012, 17, 3597–3611. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Li, W. Finite-time stabilization of coupled systems on networks with time-varying delays via periodically intermittent control. Asian J. Control. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, S.; Wei, Y.; Yang, C. Finite-time stability of delayed memristor-based fractional-order neural networks. IEEE Trans. Cybernetics. 2020, 50, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, L.; Zhao, Y.; Song, X. Dynamic stability of a class of fractional-order nonlinear systems via fixed point theory. Math. Meth. Appl. Sci. 2021, 45, 77–92. [Google Scholar] [CrossRef]
- Li, H.; Kao, Y.G.; Bao, H.B.; Chen, Y.Q. Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays. IEEE Trans. Neural Netw. Learn. Syst. 2021, 99, 1–11. [Google Scholar] [CrossRef]
- Filippov, A. Differential equations with discontinous right-hand sides. In Mathematics and Its Applications (Soviet Series); Kluwer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Podiubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1993. [Google Scholar]
- Syed, M.; Govindasamy, N.; Vineet, S.; Hamed, A. Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms. Appl. Math. Comput. 2020, 369, 124896. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Un. Mat. Ital 1972, 5, 26–42. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chen, L.; Zhao, Y. Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions. Fractal Fract. 2022, 6, 281. https://doi.org/10.3390/fractalfract6050281
Liu X, Chen L, Zhao Y. Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions. Fractal and Fractional. 2022; 6(5):281. https://doi.org/10.3390/fractalfract6050281
Chicago/Turabian StyleLiu, Xin, Lili Chen, and Yanfeng Zhao. 2022. "Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions" Fractal and Fractional 6, no. 5: 281. https://doi.org/10.3390/fractalfract6050281
APA StyleLiu, X., Chen, L., & Zhao, Y. (2022). Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions. Fractal and Fractional, 6(5), 281. https://doi.org/10.3390/fractalfract6050281