Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries: Notation and Function Spaces
- ;
- ;
- the Lebesgue space , ;
- the Sobolev space , ;
- the fractional Sobolev space , for boundary traces of functions from .
3. Strong Solutions and Main Result
4. Auxiliary Results
4.1. Abstract Theorem on Local Unique Solvability
- (i)
- the operator belongs to
- (ii)
- the operator belongs to and satisfies the following inequality
- (iii)
- the operator is a continuously Fréchet differentiable mapping such that and the Fréchet derivative is the zero operator.
4.2. Trace and Lifting Operators
4.3. Operators Related to the Linear Part of the Generalized Navier–Stokes Equations
5. Proof of Main Result
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Landau, L.D.; Lifshitz, E.M. Fluid Mechanics, 2nd ed.; Pergamon Press: Oxford, UK, 1987. [Google Scholar] [CrossRef]
- Marchioro, C.; Pulvirenti, M. Mathematical Theory of Incompressible Nonviscous Fluids; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Temam, R. Navier–Stokes Equations—Theory and Numerical Analysis; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Boyer, F.; Fabrie, P. Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. The Mathematical Theory of Viscous Incompressible Flow, 2nd ed.; Gordon and Breach: New York, NY, USA, 1969. [Google Scholar]
- Damazio, P.D.; Manholi, P.; Silvestre, A.L. Lq-theory of the Kelvin–Voigt equations in bounded domains. J. Differ. Equ. 2016, 260, 8242–8260. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Mixed initial–boundary value problem for equations of motion of Kelvin–Voigt fluids. Comput. Math. Math. Phys. 2016, 56, 1363–1371. [Google Scholar] [CrossRef]
- Baranovskii, E.S. Strong solutions of the incompressible Navier–Stokes–Voigt model. Mathematics 2020, 8, 181. [Google Scholar] [CrossRef] [Green Version]
- Khompysh, K.; Kenzhebai, K. An inverse problem for Kelvin–Voigt equations perturbed by isotropic diffusion and damping. Math. Methods Appl. Sci. 2022, 45, 3817–3842. [Google Scholar] [CrossRef]
- Oskolkov, A.P.; Shadiev, R. Towards a theory of global solvability on [0, ∞) of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin–Voight fluids. J. Math. Sci. 1994, 68, 240–253. [Google Scholar] [CrossRef]
- Doubova, A.; Fernandez-Cara, E. On the control of viscoelastic Jeffreys fluids. Syst. Control Lett. 2012, 61, 573–579. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Artemov, M.A. Global existence results for Oldroyd fluids with wall slip. Acta Appl. Math. 2017, 147, 197–210. [Google Scholar] [CrossRef]
- Bir, B.; Goswami, D. On a three step two-grid finite element method for the Oldroyd model of order one. Z. Angew. Math. Mech. 2021, 101, e202000373. [Google Scholar] [CrossRef]
- Oskolkov, A.P. Unsteady flows of viscoelastic fluids. Proc. Steklov Inst. Math. 1984, 159, 105–134. [Google Scholar]
- Oskolkov, A.P. Theory of nonstationary flows of Kelvin–Voigt fluids. J. Math. Sci. 1985, 28, 751–758. [Google Scholar] [CrossRef]
- Korobkov, M.V.; Pileckas, K.; Pukhnachov, V.V.; Russo, R. The flux problem for the Navier–Stokes equations. Russ. Math. Surv. 2014, 69, 1065–1122. [Google Scholar] [CrossRef]
- Baranovskii, E.S. The flux problem for the Navier–Stokes–Voigt equations. Differ. Equ. 2021, 57, 1579–1584. [Google Scholar] [CrossRef]
- Renardy, M.; Rogers, R. An Introduction to Partial Differential Equations, 2nd ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranovskii, E.S.; Artemov, M.A. Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions. Fractal Fract. 2022, 6, 373. https://doi.org/10.3390/fractalfract6070373
Baranovskii ES, Artemov MA. Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions. Fractal and Fractional. 2022; 6(7):373. https://doi.org/10.3390/fractalfract6070373
Chicago/Turabian StyleBaranovskii, Evgenii S., and Mikhail A. Artemov. 2022. "Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions" Fractal and Fractional 6, no. 7: 373. https://doi.org/10.3390/fractalfract6070373
APA StyleBaranovskii, E. S., & Artemov, M. A. (2022). Generalized Navier–Stokes Equations with Non-Homogeneous Boundary Conditions. Fractal and Fractional, 6(7), 373. https://doi.org/10.3390/fractalfract6070373