Some New Inequalities and Extremal Solutions of a Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation
Abstract
:1. Introduction
2. Auxiliary Material
3. The Linear Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation
4. The Nonlinear Bagley–Torvik Differential Equation
- ()
- , which satisfy the inequality, are the lower and upper solutions of the nonlinear Caputo–Fabrizio fractional Bagley–Torvik differential equation (Equation (1)), respectively;
- ()
- There exists a constantsuch that
- ()
- The function H is nondecreasing on.
5. An Ancillary Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers Inc.: Danbury, CT, USA, 2006. [Google Scholar]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics in Physics; World Scientific: Singapore, 2011. [Google Scholar]
- Rahman, G.U.; Agarwal, R.P.; Ahmad, D. Existence and stability analysis of n th order multi term fractional delay differential equation. Chaos Solitons Fractals 2022, 155, 111709. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Ntouyas, S.K. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions. Fract. Calc. Appl. Anal. 2019, 22, 601–618. [Google Scholar] [CrossRef]
- Ahmad, B.; Alblewi, M.; Ntouyas, S.K.; Alsaedi, A. Existence results for a coupled system of nonlinear multi-term fractional differential equations with anti-periodic type coupled nonlocal boundary conditions. Math. Methods Appl. Sci. 2021, 44, 8739–8758. [Google Scholar] [CrossRef]
- Hoa, N.V. On the initial value problem for fuzzy differential equations of non-integer order α∈(1,2). Soft Comput. Math. 2020, 24, 935–954. [Google Scholar] [CrossRef]
- Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Boundary value problem for fractional generalized Hilfer-type fractional derivative with noninstantaneous impulses. Fractal Fract. 2021, 21, 20215. [Google Scholar]
- Salim, A.; Benchohra, M.; Graef, J.R.; Lazreg, J.E. Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations. J. Fixed Point Theory Appl. 2022, 24, 7. [Google Scholar] [CrossRef]
- Alijani, Z.; Baleanu, D.; Shiri, B.; Wu, G. Spline collocation methods for systems of fuzzy fractional differential equations. Chaos Solitons Fractals 2019, 131, 109510. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G.; Ren, X. Radial symmetry of solution for fractional p-Laplacian system. Nonlinear Anal. 2020, 196, 111801. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W. Standing waves of nonlinear fractional P-Laplacian Schrödinger Equ. Involv. Logarithmic Nonlinearity. Appl. Math. Lett. 2020, 102, 106149. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Nieto, J. Solution of a fractional logistic ordinary differential equation. Appl. Math. Lett. 2022, 123, 107568. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G. Analysis and application of diffusion equations involving a new fractional derivative without singular kernel. Electron. J. Differ. Equ. 2017, 289, 1–6. [Google Scholar]
- Wang, G.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Wang, G. Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 2018, 76, 103–109. [Google Scholar]
- Cui, Y. Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 2016, 51, 48–54. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, S.; Sun, S.; Yin, C. Monotone iterative method for a class of fractional differential equations. Electron. J. Differ. Equ. 2016, 2016, 1–8. [Google Scholar]
- Wang, G.; Bai, Z.; Zhang, L. Successive iterations for unique positive solution of a nonlinear fractional q-integral boundary value problem. J. Appl. Anal. Comput. 2019, 9, 1204–1215. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Lu, Y. The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 2013, 219, 4680–4691. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y. The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 2014, 37, 26–33. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, N.; Ahmad, B. Explicit iterative solution of a Caputo-Hadamard-type fractional turbulent flow model. Math. Meth. Appl. Sci. 2020, 1–11. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Z.; Zhang, L.; Baleanu, D. Radial solutions of a nonlinear k-Hessian system involving a nonlinear operator. Commun. Nonlinear Sci. Numer. Simulat. 2020, 91, 105396. [Google Scholar] [CrossRef]
- Alqahtani, R.T. Fixed-point theorem for Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection. J. Nonlinear Sci. Appl. 2016, 9, 1991–1999. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm Sci. 2016, 20, 763-C769. [Google Scholar] [CrossRef]
- Gmez-Aguilar, J.F.; Baleanu, D. Schrödinger equation involving fractional operators with non-singular kernel. J. Electromagn. Waves Appl. 2017, 31, 752–761. [Google Scholar] [CrossRef]
- Goufo, E.F.D. Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Bergers equation. Math. Model. Anal. 2016, 21, 188–198. [Google Scholar] [CrossRef]
- Atangana, A. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 2016, 273, 948–956. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B.S.T. Analysis of the Keller-Segel model with a fractional derivative without singular kernel. Entropy 2015, 17, 4439–4453. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B.S.T. Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1687814015591937. [Google Scholar] [CrossRef]
- Valdes, J.E.N. Generalized fractional Hilfer integral and derivative. Contrib. Math. 2020, 2, 55–60. [Google Scholar]
- Vijayakumar, V.; Nisar, K.S.; Chalishajar, C.; Shukla, A.A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A note approximate controllability of fractional semilinear integrodifferential control systems via resolvent operators. Fractal Fract. 2022, 6, 73. [Google Scholar] [CrossRef]
- Rezapour, S.; Henrquez, H.R.; Vijayakumar, V.; Nisar, S.K.; Shukla, A. A Note on existence ofe mild solutions for second-order neutral integro-differential evolution equations with state-dependent delay. Fractal Fract. 2021, 5, 126. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhang, L.; Wang, G. Some New Inequalities and Extremal Solutions of a Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation. Fractal Fract. 2022, 6, 488. https://doi.org/10.3390/fractalfract6090488
Xu H, Zhang L, Wang G. Some New Inequalities and Extremal Solutions of a Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation. Fractal and Fractional. 2022; 6(9):488. https://doi.org/10.3390/fractalfract6090488
Chicago/Turabian StyleXu, Haiyong, Lihong Zhang, and Guotao Wang. 2022. "Some New Inequalities and Extremal Solutions of a Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation" Fractal and Fractional 6, no. 9: 488. https://doi.org/10.3390/fractalfract6090488
APA StyleXu, H., Zhang, L., & Wang, G. (2022). Some New Inequalities and Extremal Solutions of a Caputo–Fabrizio Fractional Bagley–Torvik Differential Equation. Fractal and Fractional, 6(9), 488. https://doi.org/10.3390/fractalfract6090488