Fractional Dual-Phase-Lag Model for Nonlinear Viscoelastic Soft Tissues
Abstract
:1. Introduction
2. Formulation of the Problem
3. BEM Temperature Analysis
4. BEM Displacement Analysis
5. Numerical Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Convolution with respect to time | |
Internal angle at point source | |
Boundary | |
Dirichlet boundary condition | |
Neumann boundary condition | |
Kronecker delta | |
Strain tensor | |
Alternate tensor | |
Linear strain tensor | |
Shear moduli | |
Viscoelastic constant | |
Fluid volume variation | |
Bulk density | |
Soft tissue density | |
Fluid density | |
Total stress tensor | |
Time | |
Thermal relaxation time | |
Phase lag of heat flux | |
Phase lag of temperature gradient | |
Continuous shape functions | |
Porosity | |
Discontinuous shape functions | |
Region | |
Biot’s coefficient | |
Fractional parameter | |
Stress-temperature coefficients | |
Linear elastostatics operator | |
Shape factor | |
Specific heat of soft tissue | |
Blood specific heat | |
Constant elastic moduli | |
Young’s moduli | |
Bulk body forces | |
Dirichlet datum | |
Neumann datum | |
Iterations number | |
Soft tissue thermal conductivity | |
Iterative parameter | |
Outward unit normal vector | |
Fluid pressure in the vasculature | |
Fluid specific flux | |
, | Fluid-soft tissue coupling parameters |
Euclidean distance between source point and field point | |
Metabolic heat generation | |
Soft tissue temperature | |
Blood temperature | |
Traction derivative | |
Generalized tractions | |
Trace of a matrix | |
Soft tissue displacement | |
Fluid displacement | |
Bulk volume | |
Fluid volume | |
Soft tissue volume | |
Poisson’s ratio | |
Fractional derivative coefficient | |
Blood perfusion rate | |
Space coordinates | |
Source point | |
Considered point | |
Matrices |
Appendix A
References
- Cho, Y.I. Advances in Heat Transfer: Bioengineering Heat Transfer; Academic Press Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Pennes, H.H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C. Sur une forme de i’equation de la chaleur elinant le paradox d’une propagation instantance. Comptes Rendus L’académie Sci. 1958, 247, 431–433. [Google Scholar]
- Vernotee, M.P. Les paradoxes de la theorie continue de i equation de la chleur. Comptes Rendus L’académie Sci. 1958, 246, 3154–3155. [Google Scholar]
- Tzou, D.Y. A unified field approach for heat conduction from micro to macroscale. J. Heat Transf. 1995, 117, 8–16. [Google Scholar] [CrossRef]
- Tzou, D.Y. Macro- to Microscale Heat Transfer: The Lagging Behavior; Taylor & Francis: Washington, DC, USA, 1996. [Google Scholar]
- Pei, R.Z.; Jing, L.; Cheng, W.C.; Xue, J.P. Boundary element method (BEM) for solving normal or inverse bio-heat transfer problem of biological bodies with complex shape. J. Therm. Sci. 1995, 4, 117–124. [Google Scholar]
- Ooi, E.H.; Ang, W.T.; Ng, E.Y.K. A boundary element model for investigating the effects of eye tumor on the temperature dis-tribution inside the human eye. Comput. Biol. Med. 2009, 39, 667–677. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.K.; Zhang, Y. Simulation of Laser-Induced Thermotherapy Using a Dual-Reciprocity Boundary Element Model with Dynamic Tissue Properties. IEEE Trans. Biomed. Eng. 2010, 57, 238–245. [Google Scholar] [CrossRef]
- Ng, E.; Tan, H.; Ooi, E. Boundary element method with bioheat equation for skin burn injury. Burns 2009, 35, 987–997. [Google Scholar] [CrossRef]
- Majchrzak, E.; Turchan, L. The general boundary element method for 3D dual-phase lag model of bioheat transfer. Eng. Anal. Bound. Elements 2015, 50, 76–82. [Google Scholar] [CrossRef]
- Bottauscio, O.; Chiampi, M.; Zilberti, L. Boundary Element Solution of Electromagnetic and Bioheat Equations for the Sim-ulation of SAR and Temperature Increase in Biological Tissues. IEEE Trans. Magn. 2012, 48, 691–694. [Google Scholar] [CrossRef]
- Deng, Z.-S.; Liu, J. Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method. Eng. Anal. Bound. Elements 2004, 28, 97–108. [Google Scholar] [CrossRef]
- Partridge, P.W.; Wrobel, L.C. A coupled dual reciprocity BEM/genetic algorithm for identification of blood perfusion param-eters. Int. J. Numer. Methods Heat Fluid Flow 2009, 19, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elaziz, E.; Othman, M.I.A. Effect of rotation on a micropolar magnetothermo-elastic medium with dual-phase-lag model under gravitational field. Microsyst. Technol. 2017, 23, 4979–4987. [Google Scholar]
- Othman, M.I.; Eraki, E.E. Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model. Multidiscip. Model. Mater. Struct. 2018, 14, 457–481. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Abd-Elaziz, E.M. Dual-phase-lag model on micropolar thermoelastic rotating medium under the effect of thermal load due to laser pulse. Indian J. Phys. 2020, 94, 999–1008. [Google Scholar] [CrossRef]
- Othman, M.I.A.; Zidan, M.E.M.; Mohamed, I.E.A. Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent. Steel Compos. Struct. 2021, 38, 355–363. [Google Scholar]
- Hosseini, M.; Paparisabet, M.A. The effects of blood flow on blood vessel buckling embedded in surrounding soft tissues. Int. J. Appl. Mech. 2016, 8, 1650065. [Google Scholar] [CrossRef]
- Fahmy, M.A. A Computational model for nonlinear biomechanics problems of FGA biological soft tissues. Appl. Sci. 2022, 12, 7174. [Google Scholar] [CrossRef]
- Fahmy, M.A.; Almehmadi, M.M.; Al Subhi, F.M.; Sohail, A. Fractional boundary element solution of three-temperature thermoelectric problems. Sci. Rep. 2022, 12, 6760. [Google Scholar] [CrossRef]
- Fahmy, M.A. 3D Boundary Element Model for Ultrasonic Wave Propagation Fractional Order Boundary Value Problems of Functionally Graded Anisotropic Fiber-Reinforced Plates. Fractal Fract. 2022, 6, 247. [Google Scholar] [CrossRef]
- Fahmy, M.A. A new boundary element algorithm for a general solution of nonlinear space-time fractional dual-phase-lag bio-heat transfer problems during electromagnetic radiation. Case Stud. Therm. Eng. 2021, 25, 100918. [Google Scholar] [CrossRef]
- Fahmy, M.A. A new LRBFCM-GBEM modeling algorithm for general solution of time fractional-order dual phase lag bioheat transfer problems in functionally graded tissues. Numer. Heat Transfer Part A Appl. 2019, 75, 616–626. [Google Scholar] [CrossRef]
- Fahmy, M.A. Boundary Element Algorithm for Modeling and Simulation of Dual Phase Lag Bioheat Transfer and Biome-chanics of Anisotropic Soft Tissues. Int. J. Appl. Mech. 2018, 10, 1850108. [Google Scholar] [CrossRef]
- Chan, C.L. Boundary Element Method Analysis for the Bioheat Transfer Equation. J. Biomech. Eng. 1992, 114, 358–365. [Google Scholar] [CrossRef]
- Wrobel, L.; Kassab, A. Boundary Element Method, Volume 1: Applications in Thermo-Fluids and Acoustics. Appl. Mech. Rev. 2002, 56, B17. [Google Scholar] [CrossRef]
- Lua, W.Q.; Liub, J.; Zenga, Y. Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method. Eng. Anal. Bound. Elem. 1998, 22, 167–174. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid- saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Schanz, M. Wave Propagation in Viscoelastic and Poroelastic Continua. In Lecture Notes in Applied Mechanics; Springer: New York, NY, USA, 2001; Volume 2. [Google Scholar]
- Bonnet, G.; Auriault, J.L. Dynamics of saturated and deform- able porous media: Homogenization theory and determination of the solid-liquid coupling coefficients. In Physics of Finely Divided Matter; Springer: Berlin/Heidelberg, Germany, 1985; pp. 306–316. [Google Scholar]
- Bonnet, G. Basic singular solutions for a poroelastic medium in the dynamic range. J. Acoust. Soc. Am. 1987, 82, 1758–1762. [Google Scholar] [CrossRef]
- Krahulec, S.; Sladek, J.; Sladek, V.; Hon, Y.-C. Meshless analyses for time-fractional heat diffusion in functionally graded materials. Eng. Anal. Bound. Elements 2016, 62, 57–64. [Google Scholar] [CrossRef]
- Steinbach, O. Numerical Approximation Methods for Elliptic Boundary Value Problems; Springer: New York, NY, USA, 2008. [Google Scholar]
- Wang, P.; Becker, A.A.; Jones, I.A.; Glover, A.T.; Benford, S.D.; Vloeberghs, M. Real-time surgical simulation for deformable soft-tissue objects with a tumour using Boundary Element techniques. J. Phy. Conf. Ser. 2009, 181, 012016. [Google Scholar] [CrossRef]
- Fahmy, M.A. Design Optimization for A Simulation of Rotating Anisotropic Viscoelastic Porous Structures Using Time-Domain OQBEM. Math. Comput. Simul. 2019, 66, 193–205. [Google Scholar] [CrossRef]
- Kielhorn, L. A time-domain symmetric Galerkin BEM for viscoelastodynamics. In Computation in Engineering and Science; Brenn, G., Holzapfel, G.A., Schanz, M., Steinbach, O., Eds.; Graz University of Technology, Institute of Applied Mechanics: Graz, Austria, 2009. [Google Scholar]
- Lubich, C. Convolution quadrature and discretized operational calculus. I. Numer. Math. 1988, 52, 129–145. [Google Scholar] [CrossRef]
- Lubich, C. Convolution quadrature and discretized operational calculus. II. Numer. Math. 1988, 52, 413–425. [Google Scholar] [CrossRef]
- Hoemmen, M. Communication-Avoiding Krylov Subspace Methods. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2010. [Google Scholar]
- Dehdezi, E.K.; Karimi, S. A rapid and powerful iterative method for computing inverses of sparse tensors with applications. Appl. Math. Comput. 2022, 415, 126720. [Google Scholar]
- Huang, Z.-G.; Wang, L.-G.; Xu, Z.; Cui, J.-J. The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math. Comput. 2017, 299, 95–118. [Google Scholar] [CrossRef]
- Gilchrist, M.; Murphy, J.; Parnell, W.; Pierrat, B. Modelling the slight compressibility of anisotropic soft tissue. Int. J. Solids Struct. 2014, 51, 3857–3865. [Google Scholar] [CrossRef]
- Morrow, D.A.; Donahue, T.L.H.; Odegard, G.M.; Kaufman, K.R. Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 2010, 3, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Turchan, Ł. Solving the dual-phase lag bioheat transfer equation by the generalized finite difference method. Arch. Mech. 2017, 69, 389–407. [Google Scholar]
- Marin, M.; Hobiny, A.; Abbas, I. Finite Element Analysis of Nonlinear Bioheat Model in Skin Tissue Due to External Thermal Sources. Mathematics 2021, 9, 1459. [Google Scholar] [CrossRef]
- Messner, M.; Schanz, M. A regularized collocation boundary element method for linear poroelasticity. Comput. Mech. 2011, 47, 669–680. [Google Scholar] [CrossRef]
- Liao, S. General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation. Comput. Mech. 1997, 20, 397–406. [Google Scholar] [CrossRef]
- Liao, S.; Chwang, A. General boundary element method for unsteady nonlinear heat transfer problems. Numer. Heat Transf. Part B 1999, 35, 225–242. [Google Scholar] [CrossRef]
Discretization Level | Preconditioning Level | CA-Arnoldi | D-K | GMSS | |||
---|---|---|---|---|---|---|---|
CPU Time | Iterations Number | CPU Time | Iterations Number | CPU Time | Iterations Number | ||
1 (32) | 0 | 0.07 | 7 | 0.08 | 7 | 0.05 | 7 |
2 (56) | 0 1 | 0.20 0.16 | 9 7 | 0.24 0.20 | 9 7 | 0.16 0.12 | 8 6 |
3 (104) | 0 1 2 | 0.56 0.50 0.44 | 11 9 6 | 0.62 0.56 0.48 | 12 10 8 | 0.42 0.34 0.26 | 10 6 4 |
4 (200) | 0 1 2 3 | 2.44 1.90 1.67 1.42 | 14 12 8 7 | 2.54 2.12 1.84 1.54 | 18 16 11 8 | 1.88 1.58 1.42 1.38 | 12 8 6 4 |
5 (392) | 0 1 2 3 4 | 10.03 9.11 8.21 7.26 6.62 | 16 12 10 8 6 | 12.04 10.18 9.31 8.50 7.02 | 20 18 16 12 8 | 7.90 6.89 6.11 5.84 5.20 | 14 10 8 6 4 |
6 (776) | 0 1 2 3 4 5 | 42.2 37.1 34.7 29.8 27.6 25.7 | 20 18 16 12 10 8 | 48.5 43.7 41.8 37.9 33.6 29.8 | 22 20 18 14 12 10 | 36.1 34.1 30.3 25.9 21.9 19.8 | 16 12 10 8 6 3 |
GFDM | FEM | BEM | |
---|---|---|---|
Number of Nodes | 56,000 | 54,000 | 50 |
Number of Elements | 11,500 | 10,500 | 15 |
CPU Time (min) | 180 | 190 | 2 |
Memory (MB) | 130 | 140 | 1 |
Disc Space (MB) | 260 | 280 | 0 |
Accuracy of Results (%) | 2.2 | 2.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, M.A.; Almehmadi, M.M. Fractional Dual-Phase-Lag Model for Nonlinear Viscoelastic Soft Tissues. Fractal Fract. 2023, 7, 66. https://doi.org/10.3390/fractalfract7010066
Fahmy MA, Almehmadi MM. Fractional Dual-Phase-Lag Model for Nonlinear Viscoelastic Soft Tissues. Fractal and Fractional. 2023; 7(1):66. https://doi.org/10.3390/fractalfract7010066
Chicago/Turabian StyleFahmy, Mohamed Abdelsabour, and Mohammed M. Almehmadi. 2023. "Fractional Dual-Phase-Lag Model for Nonlinear Viscoelastic Soft Tissues" Fractal and Fractional 7, no. 1: 66. https://doi.org/10.3390/fractalfract7010066
APA StyleFahmy, M. A., & Almehmadi, M. M. (2023). Fractional Dual-Phase-Lag Model for Nonlinear Viscoelastic Soft Tissues. Fractal and Fractional, 7(1), 66. https://doi.org/10.3390/fractalfract7010066