Generalized Shifted Airfoil Polynomials of the Second Kind to Solve a Class of Singular Electrohydrodynamic Fluid Model of Fractional Order
Abstract
:1. Introduction
2. Liouville–Caputo Fractional Derivative
3. The Shifted Airfoil Polynomials and Their Convergence Results
3.1. The Airfoil Polynomials: A Shifted Version
3.2. Convergent and Error Analysis
4. The Hybrid QLM-SAPSK Procedure
Testing Accuracy via REFs
5. Experimental Results and Simulations
The Fractional-Order Cases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akgül, A.; Baleanu, D.; Tchier, F. On the solutions of electrohydrodynamic flow with fractional differential equations by reproducing kernel method. Open Phys. 2016, 1, 685–689. [Google Scholar] [CrossRef]
- Alomari, A.K.; Erturk, V.S.; Momani, S.; Alsaedi, A. An approximate solution method for the fractional version of a singular BVP occurring in the electrohydro-dynamic flow in a circular cylindrical conduit. Eur. Phys. J. Plus 2019, 134, 158. [Google Scholar] [CrossRef]
- Mckee, S.; Watson, R.; Cuminato, J.A.; Caldwell, J.; Chen, M.S. Calculation of electro-hydrodynamic flow in a circular cylindrical conduit. Z. Angew. Math. Mech. 1997, 77, 457–465. [Google Scholar] [CrossRef]
- Sahlan, M.N.; Afshari, H. Lucas polynomials based spectral methods for solving the fractional order electrohydrodynamic flow model. Commun. Nonlinear Sci. Numer. Simul. 2022, 107, 106108. [Google Scholar] [CrossRef]
- Paullet, J.E. On solution of electro-hydrodynamic flow in a circular cylindrical conduit. Z. Angew. Math. Mech. 1999, 79, 357–360. [Google Scholar] [CrossRef]
- Mastroberardino, A. Homotopy analysis method applied to electrohydrodynamic flow. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 2730–2736. [Google Scholar] [CrossRef]
- Pandey, R.K.; Baranwal, V.K.; Singh, C.S.; Singh, O.P. Semi-analytic algorithms for the electro-hydrodynamic flow equation. J. Theor. Appl. Phys. 2012, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Xu, H.; Yu, Q. Homotopy Coiflets wavelet solution of electrohydrodynamic flows in a circular cylindrical conduit. Appl. Math. Mech.-Engl. Ed. 2020, 41, 681–698. [Google Scholar] [CrossRef]
- Moghtadaei, M.; Saberi, H.; Abbasbany, S. A spectral method for the electrohydrodynamic flow in a circular cylindrical conduit. Chin. Ann. Math. 2015, 36B, 307–322. [Google Scholar] [CrossRef]
- Rostamy, D.; Karimi, K.; Zabihi, F.; Alipour, M. Numerical solution of electrodynamic flow by using pseudo-spectral collocation method. Vietnam J. Math. 2013, 41, 43–49. [Google Scholar] [CrossRef]
- Ghasemi, S.E.; Hatami, M.; Ahangar, G.R.M.; Ganji, D.D. Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. J. Electrost. 2014, 72, 47–52. [Google Scholar] [CrossRef]
- Gavabari, R.H.; Abbasi, M.; Ganji, D.D.; Rahimipetroudi, I.; Bozorgi, A. Application of Galerkin and collocation method to the electro-hydrodynamic flow in a circular cylindrical conduit. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2327–2332. [Google Scholar] [CrossRef]
- Hosseini, E.; Barid Loghmani, G.; Heydari, M.; Wazwaz, A.M. A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials. Comput. Methods Differ. Equ. 2017, 5, 280–300. [Google Scholar]
- Roul, P.; Madduri, H. A new approximate method and its convergence for a strongly nonlinear problem governing electrohydrodynamic flow of a fluid in a circular cylindrical conduit. Appl. Math. Comput. 2019, 341, 335–347. [Google Scholar] [CrossRef]
- Roul, P. A fourth-order non-uniform mesh optimal B-spline collocation method for solving a strongly nonlinear singular boundary value problem describing electrohydrodynamic flow of a fluid. Appl. Numer. Math. 2020, 153, 558–574. [Google Scholar] [CrossRef]
- Roul, P.; Prasad Goura, V.M.K.; Kassner, K. A high accuracy numerical approach for electro-hydrodynamic flow of a fluid in an ion-drag configuration in a circular cylindrical conduit. Appl. Numer. Math. 2021, 165, 303–321. [Google Scholar] [CrossRef]
- Abukhaled, M.; Khuri, S.A. A fast convergent semi-analytic method for an electrohydrodynamic flow in a circular cylindrical conduit. Int. J. Appl. Comput. Math. 2021, 7, 32. [Google Scholar] [CrossRef]
- Shiralashetti, S.C.; Kantli, M.H.; Deshi, A.B. Haar wavelet based numerical solution of nonlinear differential equations arising in fluid dynamics. Int. J. Comput. Mater. Sci. Engrg. 2016, 5, 1650010. [Google Scholar] [CrossRef]
- Faheem, M.; Khan, A.; El-Zahar, E.R. On some wavelet solutions of singular differential equations arising in the modeling of chemical and biochemical phenomena. Adv. Differ. Equs. 2020, 2020, 1–23. [Google Scholar] [CrossRef]
- Izadi, M.; Roul, P. A highly accurate and computationally efficient technique for solving the electrohydrodynamic flow in a circular cylindrical conduit. Appl. Numer. Math. 2022, 181, 110–124. [Google Scholar] [CrossRef]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: River Edge, NJ, USA, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006. [Google Scholar]
- Akgül, A.; Akgül, E.K. Solving a New Type of Fractional Differential Equation by Reproducing Kernel Method; Hammouch, Z., Ed.; SM2A 2019, LNNS 168; Springer: Cham, Switzerland, 2020; pp. 34–43. [Google Scholar]
- Thirumalai, S.; Seshadri, R. Spectral solutions of fractional differential equation modelling electrohydrodynamics flow in a cylindrical conduit. Commun. Nonlinear Sci. Numer. Simul. 2019, 79, 104931. [Google Scholar] [CrossRef]
- Albadarneh, R.B.; Alomari, A.K.; Tahat, N.; Batiha, I.M. Analytic solution of nonlinear singular BVP with multi-order fractional derivatives in electrohydrodynamic flows. TWMS J. App. Eng. Math. 2021, 11, 1125–1137. [Google Scholar]
- Izadi, M.; Srivastava, H.M. Fractional clique collocation technique for numerical simulations of fractional-order Brusselator chemical model. Axioms 2022, 11, 654. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.H. A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials: Spectral solutions of fractional differential equations. Entropy 2016, 18, 345. [Google Scholar] [CrossRef]
- Sabermahani, S.; Ordokhani, Y. Fibonacci wavelets and Galerkin method to investigate fractional optimal control problems with bibliometric analysis. J. Vib. Control 2021, 27, 1778–1792. [Google Scholar] [CrossRef]
- Izadi, M.; Parsamanesh, M.; Adel, W. Numerical and stability investigations of the waste plastic management model in the ocean system. Mathematics 2022, 10, 4601. [Google Scholar] [CrossRef]
- Kumar, S.; Atangana, A. A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment. Int. J. Biomath. 2020, 13, 2050021. [Google Scholar] [CrossRef]
- El-Gamel, M.; Adel, W.; El-Azab, M.S. Eigenvalues and eigenfunctions of fourth-order Sturm-Liouville problems using Bernoulli series with Chebychev collocation points. Math. Sci. 2022, 16, 97–104. [Google Scholar] [CrossRef]
- Izadi, M.; Zeidan, D. A convergent hybrid numerical scheme for a class of nonlinear diffusion equations. Comp. Appl. Math. 2022, 41, 318. [Google Scholar] [CrossRef]
- Ahdiaghdam, S.; Shahmorad, S. Solving finite part singular integral equations using orthogonal polynomials. Bull. Iran. Math. Soc. 2020, 46, 799–814. [Google Scholar] [CrossRef]
- Soradi Zeid, S.; Yousefi, M. A new modification of Legendre-Gauss collocation method for solving a class of fractional optimal control problems. J. Mahani Math. Res. 2017, 6, 81–94. [Google Scholar]
- Yüzbaşı, Ş.; Yıldırım, G. A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials. Appl. Math. Comput. 2022, 421, 126956. [Google Scholar] [CrossRef]
- Izadi, M.; Yüzbaşı, Ş.; Ansari, K.J. Application of Vieta-Lucas series to solve a class of multi-pantograph delay differential equations with singularity. Symmetry 2021, 13, 2370. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Desmarais, R.N.; Bland, S.R. Tables of Properties of Airfoil Polynomials; NASA Reference Publication 1343; NASA Langley Research Center: Hampton, VA, USA, 1995. [Google Scholar]
- Aghigh, K.; Masjed-Jamei, M.; Dehghan, M. A survey on third and fourth kind of Chebyshev polynomials and their applications. Appl. Math. Comput. 2008, 199, 2–12. [Google Scholar] [CrossRef]
- Doha, E.H.; Abd-Elhameed, W.M.; Alsuyuti, M.M. On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems. J. Egyp. Math. Soc. 2015, 23, 397–405. [Google Scholar] [CrossRef]
- Stewart, J. Single Variable Essential Calculus: Early Transcendentals, 2nd ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Mason, J.; Handscomb, D. Chebyshev Polynomials; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Izadi, M.; Roul, P. A new approach based on shifted Vieta-Fibonacci-quasilinearization technique and its convergence analysis for nonlinear third-order Emden-Fowler equation with multi-singularity. Commun. Nonlinear Sci. Numer. Simul. 2023, 117, 106912. [Google Scholar] [CrossRef]
- Nikooeinejad, Z.; Heydari, M.; Loghmani, B. Numerical solution of two-point BVPs in infinite-horizon optimal control theory: A combined quasilinearization method with exponential Bernstein functions. Int. J. Comput. Math. 2021, 98, 2156–2174. [Google Scholar] [CrossRef]
- Delkhosh, M.; Cheraghian, H. An efficient hybrid method to solve nonlinear differential equations in applied sciences. Comp. Appl. Math. 2022, 41, 322. [Google Scholar] [CrossRef]
- Izadi, M.; Srivastava, H.M. Generalized Bessel quasilinearlization technique applied to Bratu and Lane-Emden type equations of arbitrary order. Fractal Fract. 2021, 5, 179. [Google Scholar] [CrossRef]
QLM-SAPSK | CBS [16] | ||||||
---|---|---|---|---|---|---|---|
R | CPU(s) | n | MAE | ROC | CPU(s) | ||
2 | − | 16 | − | ||||
4 | 32 | ||||||
8 | 64 | ||||||
16 | 128 |
p | ||||
---|---|---|---|---|
2 | − | − | − | − | ||||
4 | ||||||||
8 | ||||||||
16 |
2 | − | − | − | − | ||||
4 | ||||||||
8 | ||||||||
16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Izadi, M. Generalized Shifted Airfoil Polynomials of the Second Kind to Solve a Class of Singular Electrohydrodynamic Fluid Model of Fractional Order. Fractal Fract. 2023, 7, 94. https://doi.org/10.3390/fractalfract7010094
Srivastava HM, Izadi M. Generalized Shifted Airfoil Polynomials of the Second Kind to Solve a Class of Singular Electrohydrodynamic Fluid Model of Fractional Order. Fractal and Fractional. 2023; 7(1):94. https://doi.org/10.3390/fractalfract7010094
Chicago/Turabian StyleSrivastava, Hari M., and Mohammad Izadi. 2023. "Generalized Shifted Airfoil Polynomials of the Second Kind to Solve a Class of Singular Electrohydrodynamic Fluid Model of Fractional Order" Fractal and Fractional 7, no. 1: 94. https://doi.org/10.3390/fractalfract7010094
APA StyleSrivastava, H. M., & Izadi, M. (2023). Generalized Shifted Airfoil Polynomials of the Second Kind to Solve a Class of Singular Electrohydrodynamic Fluid Model of Fractional Order. Fractal and Fractional, 7(1), 94. https://doi.org/10.3390/fractalfract7010094