Local Convergence of Traub’s Method and Its Extensions
Abstract
:1. Introduction
2. Main Results
- 1.
- is the root of and exists, where
- 2.
- There exists such that for all
- 3.
- There exists such that
- 4.
- There exists such that for all
3. Illustrations and Numerical Examples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magrenán, A.A.; Argyros, I.K. A Contemporary Study of Iterative Methods: Convergence. Dynamics and Applications; Academic Press: London, UK, 2018. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Computer Science and Applied Mathematics; Academic Press: New York, NY, USA, 1970; ISBN 978-0-12-528550-6. [Google Scholar]
- Behla, R.; Arora, H. CMMSE: A novel scheme having seventh-order convergence for nonlinear systems. J. Comput. Appl. Math. 2022, 404, 113301. [Google Scholar] [CrossRef]
- Shakhno, S.M. On an iterative algorithm with superquadratic convergence for solving nonlinear operator equations. J. Comput. Appl. Math. 2009, 231, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing: New York, NY, USA, 1982; ISBN 978-0-8284-0312-2. [Google Scholar]
- Petković, M. Multipoint Methods for Solving Nonlinear Equations; Elsevier/Academic Press: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Özban, A.Y. Some new variants of Newton’s method. Appl. Math. Lett. 2004, 17, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Petković, L.D.; Petković, M.S. A note on some recent methods for solving nonlinear equations. Appl. Math. Comput. 2007, 185, 368–374. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Frontini, M.; Sormani, E. Some variant of Newton’s method with third-order convergence. Appl. Math. Comput. 2003, 140, 419–426. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 2012, 25, 2369–2374. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Parhi, S.K. On the local convergence of modified Weerakoon’s method in Banach spaces. J. Anal. 2020, 28, 867–877. [Google Scholar] [CrossRef]
- Argyros, I.K.; Cho, Y.J.; George, S. Local convergence for some third-order iterative methods under weak conditions. J. Korean Math. Soc. 2016, 53, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Nishani, H.P.S.; Weerakoon, S.; Fernando, T.G.I.; Liyanage, M. Weerakoon-Fernando Method with accelerated third-order convergence for systems of nonlinear equations. IJMMNO 2018, 8, 287. [Google Scholar] [CrossRef]
- Parhi, S.K.; Gupta, D.K. A sixth order method for nonlinear equations. Appl. Math. Comput. 2008, 203, 50–55. [Google Scholar] [CrossRef]
- George, S.; Sadan, A.R.; Jidesh, P.; Argyros, I.K. On the Order of Convergence of Noor-Waseem Method. Mathematics 2022, 10, 4544. [Google Scholar] [CrossRef]
- Beyer, W.A.; Ebanks, B.R.; Qualls, C.R. Convergence rates and convergence-order profiles for sequences. Acta Appl. Math. 1990, 20, 267–284. [Google Scholar] [CrossRef]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multipoint methods for solving nonlinear equations: A survey. Appl. Math. Comput. 2014, 226, 635–660. [Google Scholar] [CrossRef] [Green Version]
- Ezquerro, J.A.; Hernández, M.A. On the R-order of convergence of Newton’s method under mild differentiability conditions. J. Comput. Appl. Math. 2006, 197, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Potra, F.A.; Pták, V. Nondiscrete Induction and Iterative Processes; Pitman: New York, NY, USA, 1984. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s Method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2022. [Google Scholar]
- Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Drawing Dynamical and Parameters Planes of Iterative Families and Methods. Sci. World J. 2013, 2013, e780153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardelean, G. A comparison between iterative methods by using the basins of attraction. Appl. Math. Comput. 2011, 218, 88–95. [Google Scholar] [CrossRef]
Example | |||||||
---|---|---|---|---|---|---|---|
1 | |||||||
2 | |||||||
3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed K, M.; Remesh, K.; George, S.; Padikkal, J.; Argyros, I.K. Local Convergence of Traub’s Method and Its Extensions. Fractal Fract. 2023, 7, 98. https://doi.org/10.3390/fractalfract7010098
Saeed K M, Remesh K, George S, Padikkal J, Argyros IK. Local Convergence of Traub’s Method and Its Extensions. Fractal and Fractional. 2023; 7(1):98. https://doi.org/10.3390/fractalfract7010098
Chicago/Turabian StyleSaeed K, Muhammed, Krishnendu Remesh, Santhosh George, Jidesh Padikkal, and Ioannis K. Argyros. 2023. "Local Convergence of Traub’s Method and Its Extensions" Fractal and Fractional 7, no. 1: 98. https://doi.org/10.3390/fractalfract7010098
APA StyleSaeed K, M., Remesh, K., George, S., Padikkal, J., & Argyros, I. K. (2023). Local Convergence of Traub’s Method and Its Extensions. Fractal and Fractional, 7(1), 98. https://doi.org/10.3390/fractalfract7010098