Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section
Abstract
:1. Introduction
2. Problem Statement and Formulation
2.1. Dynamic Beam Equation
2.2. Finite Element Formulation
2.3. Koch Snowflakes-like cross Section
3. Numerical Examples
3.1. Bending of a Cantilever Beam
3.2. Modal Analysis of a Cantilever Beam
4. Results and Discussion
5. Conclusions
- i
- The cross-sectional area and its inertia change when the iteration does. This implies that when the iteration increases, the flexural rigidity increases as the cross-section Hausdorff dimension decreases see Equation (9).
- ii
- iii
- iv
- The beam solution with the classical cross-section is obtained for the first iteration of the Koch’s snowflake fractal.
- v
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.M.; Reddy, J.N.; Lee, K.H. Shear Deformable Beam and Plates; Elsevier: Kidlington, UK, 2000. [Google Scholar]
- Cicirello, A. On the response bounds of damaged Euler–Bernoulli beams with switching cracks under moving masses. Int. J. Solids Struct. 2019, 172–173, 70–83. [Google Scholar] [CrossRef]
- Bauchau, O.A.; Craig, I.J. Structural Analysis with Application to Aerospace Structures; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2009. [Google Scholar]
- Shang, H.; Machado, R.; Abdalla-Fillo, J. Dynamic analysis of Euler–Bernoulli beam problems using the Generalized Finite Element Method. Comput. Struct. 2016, 173, 109–122. [Google Scholar] [CrossRef]
- Olson, G.; Hatton, R.; Adams, J.; Menguc, Y. An Euler–Bernoulli beam model for soft robot arms bent through self-stress and external loads. Int. J. Solids Struct. 2020, 207, 113–131. [Google Scholar] [CrossRef]
- Ishaquddin, M.; Gopalakrishnan, S. Differential quadrature-based solution for non-classical Euler–Bernoulli beam theory. Eur. J. Mech./A Solids 2021, 86, 104135. [Google Scholar] [CrossRef]
- Ruiz, A.; Ramírez, M. Exact general solution and first integrals of a remarkable static Euler–Bernoulli beam equation. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 261–269. [Google Scholar] [CrossRef]
- Yong, H.; Ling-E, Y.; Qi-Zhi, L. Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos. Part B Eng. 2012, 45, 1493–1498. [Google Scholar] [CrossRef]
- Juarez, G.; Ayala, A. Finite element variational formulation for beams with discontinuities. Finite Elem. Anal. Des. 2012, 54, 37–47. [Google Scholar] [CrossRef]
- Failla, G.; Santini, A. On Euler–Bernoulli discontinuous beam solutions via uniform-beam Green’s functions. Int. J. Solid Struct. 2007, 44, 7666–7687. [Google Scholar] [CrossRef]
- Palmeri, A.; Cicirello, A. Physically-based Dirac’s delta functions in the static analysis of multi-cracked Euler–Bernoulli and Timoshenko beams. Int. J. Solids Struct. 2011, 48, 2184–2195. [Google Scholar] [CrossRef]
- Delsanto, P.; Gliozzi, S.; Bruno, L.; Pugno, N.; Carpinteri, A. Scaling laws and fractality in the framework of a phenomenological approach. Chaos Solitons Fractals 2009, 41, 2782–2786. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K. Equilibrium and non-equilibrium statistical mechanics with generalized fractal derivatives: A review. Mod. Phys. Lett. A 2021, 35, 2140002. [Google Scholar] [CrossRef]
- Li, J.; Ostoja-Starzewski, M. Fractal solids, product measures and fractional wave equations. Proc. R Soc. A Math. Phys. 2009, 465, 2521–2536. [Google Scholar] [CrossRef]
- Balankin, A.; Patino, J.; Patino, M. Inherent features of fractal sets and key attributes of fractal models. Fractals 2022, 30, 2250082. [Google Scholar] [CrossRef]
- Stempin, P.; Sumelka, W. Formulation and experimental validation of space-fractional Timoshenko beam model with functionally graded materials effects. Comput. Mech. 2021, 68, 697–708. [Google Scholar] [CrossRef]
- Lazopoulos, K.A.; Lazopoulos, A.K. On fractional bending of beams with A-fractional derivative. Arch. Appl. Mech. 2020, 90, 573–584. [Google Scholar] [CrossRef]
- Blaszczyk, T.; Siedlecki, J.; Sun, H. An exact solution of fractional Euler–Bernoulli equation for a beam with fixed-supported and fixed-free ends. Appl. Math. Comput. 2021, 396, 125932. [Google Scholar] [CrossRef]
- Samayoa, D.; Kriyvko, A.; Velázquez, G.; Mollinedo, H. Fractal Continuum Calculus of Functions on Euler–Bernoulli Beam. Fractal Fract. 2022, 6, 552. [Google Scholar] [CrossRef]
- Samayoa, D.; Damián, L.; Kriyvko, A. Map of bending problem for self-similar beams into fractal continuum using Euler–Bernoulli principle. Fractal Fract. 2022, 6, 230. [Google Scholar] [CrossRef]
- Shen, L.; Ostoja-Starzewski, M.; Porcu, E. Bernoulli–Euler beams with random field properties under random field loads: Fractal and Hurst effects. Arch. Appl. Mech. 2014, 84, 1595–1696. [Google Scholar] [CrossRef]
- Golmankhaneh, A.; Ali, K.; Yilmazer, R.; Awad-Kaabar, M. Local fractal Fourier transform and applications. Comput. Methods Differ. Equ. 2022, 10, 595–607. [Google Scholar] [CrossRef]
- Davey, K.; Rasgado, M. Analytical solutions for vibrating fractal composite rods and beams. Appl. Math. Model. 2011, 35, 1194–1209. [Google Scholar] [CrossRef]
- Alizadeh, M.; Hosseinzadeh, K.; Mehrzadi, H.; Ganji, D. Investigation of LHTESS filled by Hybrid nano-enhanced PCM with Koch snowflake fractal cross section in the presence of thermal radiation. J. Mol. Liq. 2019, 273, 414–424. [Google Scholar] [CrossRef]
- Singhal, S. CPW fed koch snowflake superwideband terahertz spatial diversity antenna. Opt.-Int. J. Light Electron. Opt. 2020, 206, 16432. [Google Scholar] [CrossRef]
- Rostami, H.; Najafabadi, M.; Ganji, D. Analysis of Timoshenko beam with Koch snowflake cross-section and variable properties in different boundary conditions using finite element method. Adv. Mech. Eng. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Neuberger, J.; Sieben, N.; Swift, J. Computing eigenfunctions on the Koch Snowflake: A new grid and symmetry. J. Comput. Appl. Math. 2006, 191, 126–142. [Google Scholar] [CrossRef]
- Neuberger, J.; Sieben, N.; Swift, J. Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region. SIAM J. Appl. Dyn. Syst. 2006, 5, 476–507. [Google Scholar] [CrossRef]
- Neuberger, J.; Swift, J. Newton’s method and Morse index for semilinear ellipctic PDEs. Int. J. Bifurc. Chaos 2001, 11, 801–820. [Google Scholar] [CrossRef]
- Arzamastseva, G.; Evtikhov, M.; Lisovsky, F.; Mansvetova, E. Family of generalized triadic Koch fractals: Dimensions and Fourier images. Radioelectron. Nanosyst. Inf. Technol. 2016, 8, 81–90. [Google Scholar] [CrossRef]
- Sepehri, S.; Jafari, H.; Mashhadi, M.M.; Yazdi, M.R.H.; Fakhrabadi, M.M.S. Study of tunable locally resonant metamaterials: Effects of spider-web and snowflake hierarchies. Int. J. Solids Struct. 2020, 204, 81–95. [Google Scholar] [CrossRef]
- Jiao, J.; Chen, C.; Yu, D. Observation of topological valley waveguide transport of elastic waves in snowflake plates. Compos. Struct. 2022, 286, 115297. [Google Scholar] [CrossRef]
- Tumakov, D.; Chikrin, D.; Kokunin, P. Miniaturization of a Koch-Type Fractal Antenna for Wi-Fi Applications. Fractal Fract. 2020, 4, 25. [Google Scholar] [CrossRef]
- Krzysztofik, W.J. Fractal Geometry in Electromagnetics Applications-from Antenna to Metamaterials. Microw. Rev. 2013, 19, 3–14. Available online: http://www.mtt-serbia.org.rs/files/MWR/MWR2013dec/Vol19No2-02-WKrzysztofik.pdf (accessed on 24 January 2023).
- Llano-Sanchez, L.; Domínguez-Cajeli, D.; Ruiz-Cardenas, L. Thermal transfer analysis of tubes with extended surface with fractal design. Rev. Fac. Ing. 2018, 23, 29–35. [Google Scholar] [CrossRef]
- Labit, B.; Canal, G.P.; Christen, N.; Duval, B.P.; Lipschultz, B.; Lunt, T.; Nespoli, F.; Reimerdes, H.; Sheikh, U.; Theiler, C.; et al. Experimental studies of the snowflake divertor in TCV. Nucl. Mater. Energy 2017, 12, 1015–1019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samayoa, D.; Mollinedo, H.; Jiménez-Bernal, J.A.; Gutiérrez-Torres, C.d.C. Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section. Fractal Fract. 2023, 7, 153. https://doi.org/10.3390/fractalfract7020153
Samayoa D, Mollinedo H, Jiménez-Bernal JA, Gutiérrez-Torres CdC. Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section. Fractal and Fractional. 2023; 7(2):153. https://doi.org/10.3390/fractalfract7020153
Chicago/Turabian StyleSamayoa, Didier, Helvio Mollinedo, José Alfredo Jiménez-Bernal, and Claudia del Carmen Gutiérrez-Torres. 2023. "Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section" Fractal and Fractional 7, no. 2: 153. https://doi.org/10.3390/fractalfract7020153
APA StyleSamayoa, D., Mollinedo, H., Jiménez-Bernal, J. A., & Gutiérrez-Torres, C. d. C. (2023). Effects of Hausdorff Dimension on the Static and Free Vibration Response of Beams with Koch Snowflake-like Cross Section. Fractal and Fractional, 7(2), 153. https://doi.org/10.3390/fractalfract7020153