Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications
Abstract
:1. Introduction
2. Preliminaries
- and are in the set .
- .
- .
- .
- .
- .
- and .
- , with and .
- , where denotes the Mittag–Leffler function.
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alomari, M.; Liu, Z. New error estimations for the Milne’s quadrature formula in terms of at most first derivatives. Konuralp J. Math. 2013, 1, 17–23. [Google Scholar]
- Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Hamasalh, F.; Chu, Y. New Simpson-type integral inequalities for s-convex functions and their applications. Math. Probl. Eng. 2020, 2020, 8871988. [Google Scholar] [CrossRef]
- Lakhdari, A.; Meftah, B. Some fractional weighted trapezoid type inequalities for preinvex functions. Int. J. Nonlinear Anal. 2022, 1, 3567–3587. [Google Scholar]
- Pečarić, J.; Varošanec, S. A note on Simpson’s inequality for functions of bounded variation. Tamkang J. Math. 2000, 3, 239–242. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 8, 2191–2199. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), CISM Courses and Lect., 378; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and applications of fractional differential equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Macmillan: New York, NY, USA, 1983. [Google Scholar]
- Yang, X.-J. Advanced Local Fractional Calculus and Its Applications; World Science Publisher: New York, NY, USA, 2012. [Google Scholar]
- Yang, X.J. Local Fractional Functional Analysis and Its Applications; Asian Academic Publisher Limited: Hong Kong, China, 2011. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Ahmad, J.; Mohyud-Din, S.T. Solving wave and diffusion equations on Cantor sets. Proc. Pakistan Acad. Sci. 2015, 1, 81–87. [Google Scholar]
- Yang, X.-J.; Srivastava, H.M.; He, J.-H.; Baleanu, D. Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives. Phys. Lett. A 2013, 377, 1696–1700. [Google Scholar] [CrossRef]
- Yang, X.-J.; Srivastava, H.M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2015, 29, 499–504. [Google Scholar] [CrossRef]
- Yang, X.-J.; Machado, J.A.T.; Nieto, J.J. A new family of the local fractional PDEs. Fund. Inform. 2017, 151, 63–75. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; Chu, Y.-M. Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Difference Equ. 2020, 406, 27. [Google Scholar] [CrossRef]
- Akkurt, A.; Sarikaya, M.Z.; Budak, H.; Yildirim, H. Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2017, 111, 797–807. [Google Scholar] [CrossRef]
- Al Quarashi, M.; Rashid, S.; Khalid, A.; Karaca, Y.; Chu, Y.-M. New computations of Ostrowski type inequality pertaining to fractal style with applications. Fractals 2021, 29, 2140026. [Google Scholar] [CrossRef]
- Chen, G.-S. Generalizations of Hölder’s and some related integral inequalities on fractal space. J. Funct. Spaces Appl. 2013, 9, 198405. [Google Scholar] [CrossRef] [Green Version]
- Erden, S.; Sarikaya, M.Z. Generalized Pompeiu type inequalities for local fractional integrals and its applications. Appl. Math. Comput. 2016, 274, 282–291. [Google Scholar] [CrossRef]
- Iftikhar, S.; Kumam, P.; Erden, S. Newton’s-type integral inequalities via local fractional integrals. Fractals 2020, 3, 2050037. [Google Scholar] [CrossRef]
- Kiliçman, A.; Saleh, W. Notions of generalized s-convex functions on fractal sets. J. Inequal. Appl. 2015, 2015, 312. [Google Scholar] [CrossRef]
- Lakhdari, A.; Saleh, W.; Meftah, B.; Iqbal, A. Corrected Dual–Simpson–Type Inequalities for Differentiable Generalized Convex Functions on Fractal Set. Fractal. Fract. 2022, 6, 710. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, W. A Hilbert-type fractal integral inequality and its applications. J. Inequal. Appl. 2017, 83, 8. [Google Scholar] [CrossRef]
- Meftah, B.; Souahi, A.; Merad, M. Some local fractional Maclaurin-type inequalities for generalized convex functions and their applications. Chaos Solitons Fractals 2022, 162, 112504. [Google Scholar] [CrossRef]
- Mo, H.; Sui, X. Hermite-Hadamard-type inequalities for generalized s-convex functions on real linear fractal set Rγ0<γ<1. Math. Sci. 2017, 3, 241–246. [Google Scholar]
- Sarikaya, M.Z.; Tunc, T.; Budak, H. On generalized some integral inequalities for local fractional integrals. Appl. Math. Comput. 2016, 276, 316–323. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
- Set, E.; Sarikaya, M.Z.; Uygun, N. On new inequalities of Simpson’s type for generalized quasi-convex functions. Adv. Inequal. Appl. 2017, 3, 1–11. [Google Scholar]
- Yang, Y.-J.; Baleanu, D.; Yang, X.-J. Analysis of fractal wave equations by local fractional Fourier series method. Adv. Math. Phys. 2013, 2013, 632309. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meftah, B.; Lakhdari, A.; Saleh, W.; Kiliçman, A. Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications. Fractal Fract. 2023, 7, 166. https://doi.org/10.3390/fractalfract7020166
Meftah B, Lakhdari A, Saleh W, Kiliçman A. Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications. Fractal and Fractional. 2023; 7(2):166. https://doi.org/10.3390/fractalfract7020166
Chicago/Turabian StyleMeftah, Badreddine, Abdelghani Lakhdari, Wedad Saleh, and Adem Kiliçman. 2023. "Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications" Fractal and Fractional 7, no. 2: 166. https://doi.org/10.3390/fractalfract7020166
APA StyleMeftah, B., Lakhdari, A., Saleh, W., & Kiliçman, A. (2023). Some New Fractal Milne-Type Integral Inequalities via Generalized Convexity with Applications. Fractal and Fractional, 7(2), 166. https://doi.org/10.3390/fractalfract7020166