Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function
Abstract
:1. Introduction and Preliminaries
2. Third-Order Differential Subordination Results with
3. Further Results Involving
4. Some Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bulboacă, T. Differential Subordinations and Superordinations, Recent Results; House of Scientific Book Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. Theory Appl. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordinations in the complex plane. Complex Var. Elliptic Eq. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle function. C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sur la representation analytique d’une function monogene (cinquieme note). Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal. Appl. Math. Comp. 2009, 211, 198–210. [Google Scholar]
- Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar]
- Aouf, M.K.; Seoudy, T.M. Some families of meromorphic p-valent functions involving a new operator defined by generalized Mittag-Leffler function. J. Egypt. Math. Soc. 2018, 26, 406–411. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Differential subordination and superordination of analytic functions defined by the Dziok–Srivastava linear operator. J. Frankl. Inst. 2010, 347, 1762–1781. [Google Scholar] [CrossRef]
- Ali, R.M.; Nagpal, S.; Ravichandran, V. Second-order differential subordination for analytic functions with fixed initial coefficient. Bull. Malays. Math. Sci. Soc. 2011, 34, 611–629. [Google Scholar]
- Owa, S.; Attiya, A.A. An application of differential subordinations to the class of certain analytic functions. Taiwan. J. Math. 2009, 13, 369–375. [Google Scholar]
- Baricz, A.; Kant, S.; Prajapat, J.K. Differential subordination and superordination results associated with the Wright function. Bull. Iran. Math. Soc. 2016, 42, 1459–1477. [Google Scholar]
- Çetinkaya, A.; Cotîrlă, L. Briot–Bouquet differential subordinations for analytic functions involving the Struve function. Fractal Fract. 2022, 6, 540. [Google Scholar] [CrossRef]
- Cho, N.E.; Nishiwaki, J.; Owa, S.; Srivastava, H.M. Subordination and superordination for multivalent functions associated with a class of fractional differintegral operators. Integral Transform. Spec. Funct. 2010, 21, 243–258. [Google Scholar] [CrossRef]
- Farzana, H.A.; Jeyaraman, M.P.; Bulboacă, T. On certain subordination properties of a linear operator. J. Fract. Calc. 2021, 12, 148–162. [Google Scholar]
- Porwal, S.; Murugusundaramoorthy, G. Geometric properties of a new integral operator associated with Dini functions. Electron. J. Math. Anal. Appl. 2022, 10, 267–274. [Google Scholar]
- Seoudy, T.M. Second order differential subordination and superordination of Liu-Srivastava operator on meromorphic functions. Afr. Mat. 2021, 32, 1399–1408. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Prajapati, A.; Gochhayat, P. Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava–Attiya operator. Appl. Math. Inf. Sci. 2018, 12, 469–481. [Google Scholar] [CrossRef]
- Tang, H.; Deniz, E. Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. Ser. B 2014, 34, 1707–1719. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Li, S.-H.; Ma, L.-N. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator. Abstr. Appl. Anal. 2014, 2014, 792175. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S. Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attiya, A.A.; Seoudy, T.M.; Albaid, A. Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function. Fractal Fract. 2023, 7, 175. https://doi.org/10.3390/fractalfract7020175
Attiya AA, Seoudy TM, Albaid A. Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function. Fractal and Fractional. 2023; 7(2):175. https://doi.org/10.3390/fractalfract7020175
Chicago/Turabian StyleAttiya, Adel A., Tamer M. Seoudy, and Abdelhamid Albaid. 2023. "Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function" Fractal and Fractional 7, no. 2: 175. https://doi.org/10.3390/fractalfract7020175
APA StyleAttiya, A. A., Seoudy, T. M., & Albaid, A. (2023). Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function. Fractal and Fractional, 7(2), 175. https://doi.org/10.3390/fractalfract7020175