Next Article in Journal
On the 1st-Level General Fractional Derivatives of Arbitrary Order
Next Article in Special Issue
Certain Properties and Applications of Δh Hybrid Special Polynomials Associated with Appell Sequences
Previous Article in Journal
On a System of Sequential Caputo Fractional Differential Equations with Nonlocal Boundary Conditions
Previous Article in Special Issue
Bifurcation and Analytical Solutions of the Space-Fractional Stochastic Schrödinger Equation with White Noise
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions

by
Muath Awadalla
1,* and
Murugesan Manigandan
2,*
1
Department of Mathematics and Statistics, College of Science, King Faisal University, Hafuf 31982, Al Ahsa, Saudi Arabia
2
Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641020, Tamilnadu, India
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(2), 182; https://doi.org/10.3390/fractalfract7020182
Submission received: 7 January 2023 / Revised: 31 January 2023 / Accepted: 9 February 2023 / Published: 12 February 2023

Abstract

:
In this study, based on Coitz and Nadler’s fixed point theorem and the non-linear alternative for Kakutani maps, existence results for a tripled system of sequential fractional differential inclusions (SFDIs) with integral and multi-point boundary conditions (BCs) in investigated. A practical examples are given to illustrate the obtained the theoretical results.

1. Introduction

FCs ware first employed in 1695 when L’Hopital summarized his discoveries in a letter to Leibniz. Fractional calculus (FCs) was studied by several twentieth century authors, including Liouville, Grunwald, Letnikov, and Riemann. This field of mathematics, known as fractional differential equations, was invented by mathematicians as a pure branch of mathematics with just a few applications in mathematics. Fractional calculus is a well-established subject with applications in many applied sciences, such as visco-elasticity, medical, and environment, which leads the fractional differential equations to become extremely prevalent. We recommend the monographs [1,2,3,4,5,6,7,8] and the recently mentioned papers [9,10,11,12,13,14,15,16,17]. It is worth noting that most of the works in the field of fractional differentiation focus mostly on R-L and Caputo types. See [18,19,20,21,22].
In 1772, Russian scientists presented a general idea of stability, such as Lyapunov (1758–1817), where the general theme of his doctoral dissertation was movement stability, and his work soon spread all over Russia and later in the West. With the process of research, scientists entered the time delay, and the first to describe these systems with a time delay was the scientist (Boltzman), who studied its effect but did not refer to the time delay in realistic models.
In the early 1900s, a disagreement arose over the necessity of introducing time delays into systems to predict their future development, but this point of view contradicted the Newtonian traditions, which claimed that knowledge of the current values of all relevant variables should suffice for the prediction. Ulam and Hyers, on the other hand, recognized unknown types of stability known as ulam-stability. Hyer’s type of stability study contributes expressively to our understanding of population dynamics and fluid movement, see [23].
In mathematics, differential inclusions relate to one or more functions and their derivatives. In applications, functions generally represent physical quantities, derivatives represent their rates of change, and differential inclusion defines the relationship between the two. Because these relationships are so common, differential equations play a prominent role in many disciplines, including engineering, physics, economics, and biology. The study of differential inclusions mainly consists of studying their solutions (the set of functions that satisfy the equation), and the properties of their solutions. The simplest differential inclusions can be solved by explicit formulas. However, many properties of solutions to particular differential inclusions may be determined without being exactly calculated. If a closed expression is not available for the solutions, the solutions may be numerically approximated using computers. Dynamical systems theory focuses on the qualitative analysis of systems described by differential equations and differential inclusions, while many numerical methods have been developed to determine solutions with a certain degree of precision.
Many of the basic laws of physics and chemistry can be formulated as differential equations. In biology and economics, differential equations are used to model the behavior of complex systems. The mathematical theory of differential equations developed first with the sciences in which the equations originated and where the results were put into practice. However, various problems which sometimes arise in quite distinct scientific fields may result in identical differential equations. Whenever this happens, the mathematical theory behind the equations can be seen as a unifying principle behind the various phenomena. For example, consider the propagation of light and sound in the atmosphere, and the waves on the surface of a pond. They can all be described by the same second-order partial differential equation, which is the wave equation, that allows us to think of light and sound as forms of waves, much like the familiar waves in water. Heat conduction, developed by Joseph Fourier, is governed by a second-order partial differential equation, the heat equation. It turns out that many diffusion processes, though apparently different, are described by the same equation; the Black–Scholes equation in finance, for example, is related to the heat equation [24,25]. In [26], the authors were the first who developed the idea of the tripled fixed points. Karakaya et al. [27] introduce tripled fixed points for a class of condensing operators in Banach spaces. In [25], the authors studied the existence results for the following BVP.
c D ψ k Z k ( τ ) = f k ( τ , Z ( τ ) ) , 1 < ψ k 2 , Z k ( j ) ( 0 ) = a k , j Z ε ( k ) ( j ) ( T ) , k = 1 , 2 , 3 ; j = 0 , 1 .
where c D 0 ψ k denotes the Caputo fractional derivatives (CFDs) of order ψ k , τ J = [ 0 , T ] , f k : J × R e 3 R e are continuous functions, Z = ( Z 1 , Z 2 , Z 3 ) R e 3 , ε = ( 1 , 2 , 3 ) is a cyclic permutation, and a k , j k = 1 , 2 , 3 , j = 0 , 1 . In this work, motivated by [28], we consider the following system of sequential fractional differential inclusions:
( c D ψ + φ c D ψ 1 ) Z ( ϖ ) F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 2 < ψ 3 , ( c D ϕ + φ c D ϕ 1 ) Q ( ϖ ) F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 2 < ϕ 3 , ( c D ω + φ c D ω 1 ) Y ( ϖ ) F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 3 < ω 4 , Z ( 0 ) = 0 , Z ( 0 ) = 0 , Z ( T ) = Υ 1 j = 1 k 2 ξ j Q ( ζ j ) + Π 1 I ς Q ( ϑ ) , Q ( 0 ) = 0 , Q ( 0 ) = 0 , Q ( T ) = Υ 2 j = 1 k 2 ν j Y ( ζ j ) + Π 2 I ϱ Y ( ϑ ) , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( T ) = Υ 3 j = 1 k 2 σ j Z ( ζ j ) + Π 3 I δ Z ( ϑ ) ,
where c D χ is a CFDs of order χ { ψ , ϕ , ω } , F 1 , F 2 , F 3 : [ 0 , T ] × R e × R e × R e P ( R e ) are given continuous functions, P ( R e ) is the family of all non-empty subset of R e , ζ j R e , j = 1 , , k 2 and ϑ [ 0 , T ] .
The Caputo SFDEs with multi-point and integral boundary conditions discussed in this work are the most widely used Caputo fractional derivatives. The novelty and originality of this work is summarized by using Covitz and Nadler’s fixed point theorem and the non-linear alternative for Kakutani maps in showing the existence results for a tripled system of sequential fractional differential inclusions.
Preliminaries are introduced in the second section, main results are shown in the third section. Finally, in Section 4, we give some numerical examples to show the effectiveness of the obtained theoretical results.

2. Preliminaries

This portion introduces basic fractional calculus concepts, definitions, and tentative results [1,2,3].
Let J ^ = C ( [ 0 , T ] , R e ) be a Banach space endowed with the norm Z = sup { | Z ( ϖ ) | , ϖ [ 0 , T ] } . Then ( J ^ × J ^ × J ^ , ( Z , Q , Y ) J ^ ) is also a Banach space equipped with the norm ( Z , Q , Y ) J ^ = Z + Q + Y , Z , Q , Y J ^ .
Let ( M 1 , · ) be a normed space and that U c l ( M 1 ) = { A U ( M 1 ) : A is   closed } , U c , c p ( M 1 ) = { A U ( M 1 ) : A is   convex   and   compact } .
A multi-valued map Q : M 1 U ( M 1 ) is
(a)
Convex valued if Q ( s ) is convex s M 1 ;
(b)
Upper semi-continuous (U.S.C.) on M 1 if, for each s 0 M 1 ; the set Q ( s 0 ) is a non-empty closed subset of M 1 and if, for each open set V of M 1 containing Q ( s 0 ) , there exists an open neighborhood V 0 of s 0 , such that Q ( V 0 ) V ;
(c)
Lower semi-continuous (L.S.C.) if the set { s M 1 : Q ( s ) E } is open for any open set E in H ;
(d)
Completely continuous (C.C) if Q ( E ) is relatively compact (r.c) for every E U b ( M 1 ) = { A U ( M 1 ) : A is   bounded } .
A map Q : [ c , d ] U c l ( R e ) of multi-valued is said to be measurable if, for every s R e , the function t d ( s , Q ( t ) ) = inf { | s l | : l Q ( t ) } is measurable.
A multi-valued map Q : [ c , d ] × R e U ( R e ) is said to be Caratheodory if
(i)
t Q ( t , q , s ) is measurable for each q , s R e ;
(ii)
( q , s ) Q ( t , q , s ) is U.S.C for almost all t [ c , d ] .
Further, a Caratheodory function Q is called L 1 -Caratheodory if
(i)
For each ε > 0 , ∃ ϕ ε L 1 ( [ c , d ] , R e + ) Q ( t , q , s ) = sup { | q | : q Q ( t , q , s ) ϕ ε ( t ) } q , s R e with q , s ε and for a.e. t [ c , d ] .
Lemma 1.
Let M a closed convex subset of a Banach space M 1 and W be an open subset of K with 0 W . In addition, H : W ^ Z c , c p ( K ) is an u.s.c compact map. Then either
  • H has fixed point in W ^ or
  • w W and λ ( 0 , 1 ) , such that w λ H ( w ) .
Lemma 2 
([29]). Let Y : M 1 M 1 be a completely continuous operator in Banach Space M 1 and the set Ψ = { s M 1 | s = δ Y s , 0 < δ < 1 } is bounded. Then Y has a fixed point in M 1 .
Definition 1. 
The fractional integral of order ψ with the lower limit zero for a function k is defined as
I ψ k ( τ ) = 1 Γ ( ψ ) 0 τ k ( ρ ) ( τ ρ ) 1 ψ d s , τ > 0 , ψ > 0 ,
provided the right-hand side is point-wise defined on [ 0 , ) , where Γ ( . ) is the gamma function, which is defined by Γ ( ψ ) = 0 τ ψ 1 e τ d τ .
Definition 2. 
The R-L fractional derivative of order ψ > 0 , n 1 < ψ < n , n N is defined as
D 0 + ψ k ( τ ) = 1 Γ ( n ψ ) d d τ n 0 τ ( τ ρ ) n ψ 1 k ( ρ ) d ρ , τ > 0 ,
where the function k has absolutely continuous derivative up to order ( n 1 ) .
Definition 3.
The Caputo derivative of order ψ [ n 1 , n ) for a function k : [ 0 , ) ( R ) can be written as
c D 0 + ψ k ( τ ) = D 0 + ψ k ( τ ) m = 0 n 1 τ m m ! f ( m ) ( 0 ) , τ > 0 , n 1 < r < n .
Note that the CFDs of order ψ [ n 1 , n ) almost everywhere on [ 0 , ) if k AC n ( [ 0 , ) , ( R ) ) .
Next, we state and prove the auxiliary lemma, which will help us in constructing the existence results for our proposed system.
Lemma 3.
Let G 1 , G 2 , G 3 C [ 0 , T ] and Δ 0 . Then the solution of the linear fractional differential system,
( c D ψ + φ c D ψ 1 ) Z ( ϖ ) = G 1 , 2 < ψ 3 , ( c D ϕ + φ c D ϕ 1 ) Q ( ϖ ) = G 2 , 2 < ϕ 3 , ( c D ω + φ c D ω 1 ) Y ( ϖ ) = G 3 , 3 < ω 4 , Z ( 0 ) = 0 , Z ( 0 ) = 0 , Z ( T ) = Υ 1 j = 1 k 2 ξ j Q ( ζ j ) + Π 1 I ς Q ( ϑ ) , Q ( 0 ) = 0 , Q ( 0 ) = 0 , Q ( T ) = Υ 2 j = 1 k 2 ν j Y ( ζ j ) + Π 2 I ϱ Y ( ϑ ) , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( T ) = Υ 3 j = 1 k 2 σ j Z ( ζ j ) + Π 3 I δ Z ( ϑ ) ,
is given by
Y ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) G 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) G 3 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) G 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) G 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ ,
Q ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) G 3 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) G 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) G 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ ,
Y ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) G 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) G 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) G 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) G 3 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) G 2 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) G 3 ( τ ) d τ d ρ ,
where
E 1 = ( φ T 1 + e φ T ) φ 2 , E 3 = ( φ T 1 + e φ T ) φ 2 , E 5 = ( φ 2 T 2 2 φ T + 2 2 e φ T ) φ 3 , E 2 = 1 φ 2 Υ 1 j = 1 k 2 ξ j ( φ ζ j 1 + e φ ζ j ) + Π 1 0 ϑ ( ϑ ρ ) ς 1 Γ ( ς ) ( φ s 1 + e φ s ) d ρ , E 4 = 1 φ 3 Υ 2 j = 1 k 2 ν j ( φ 2 ζ j 2 2 φ ζ j + 2 e φ ζ j ) + Π 2 0 ϑ ( ϑ ρ ) ϱ 1 Γ ( ϱ ) ( φ 2 s 2 2 φ s + 2 2 e φ s ) d ρ , E 6 = 1 φ 2 Υ 3 j = 1 k 2 σ j ( φ ζ j 1 + e φ ζ j ) + Π 3 0 ϑ ( ϑ ρ ) δ 1 Γ ( δ ) ( φ s 1 + e φ s ) d ρ , Δ = ( E 1 E 3 E 5 E 2 E 4 E 6 ) .

3. Multi-Valued System

Definition 4.
A function ( Z , Q , Y ) C 1 ( [ 0 , T ] , R e ) × C 1 ( [ 0 , T ] , R e ) × C 1 ( [ 0 , T ] , R e ) satisfying the boundary conditions and for which there f , g , h = L 1 ( [ 0 , T ] , R e ) , such that
f ( ϖ ) F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , g ( ϖ ) F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , h ( ϖ ) F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) a.e. on ϖ [ 0 , T ] and
With the help of Lemma 3, we define an operator F : J ^ × J ^ × J ^ J ^ × J ^ × J ^ by
F 1 Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ ,
F 2 Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ ,
and
F 3 Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m , Z ( m ) , Q ( m ) , Y ( m ) ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ , Z ( τ ) , Q ( τ ) , Y ( τ ) ) d τ d ρ .
For easy calculations, we set
P 1 = ( φ 1 + e φ ) φ 2 E 1 T ψ 1 ( 1 e φ T ) φ Γ ( ψ ) + E 2 E 4 E 6 Δ T ψ 1 ( 1 e φ T ) φ Γ ( ψ ) + E 1 E 2 E 4 Δ Υ 3 j = 1 k 2 | σ j | ζ j ψ ( 1 e φ ζ j ) φ Γ ( ψ ) + Π 3 δ ψ + ϑ 1 φ 2 Γ ( ψ ) Γ ( ϑ ) ( δ φ + e φ δ 1 ) + ( 1 e φ ) φ Γ ( ψ ) , Q 1 = ( φ 1 + e φ ) φ 2 E 1 Υ 1 j = 1 k 2 | ξ j | ζ j ϕ ( 1 e φ ζ j ) φ Γ ( ϕ ) + Π 1 ς ϕ + ϑ 1 φ 2 Γ ( ϕ ) Γ ( ϑ ) ( ς φ + e φ ς 1 ) + E 2 E 4 E 6 Δ Υ 1 j = 1 k 2 | ξ j | ζ j ϕ ( 1 e φ ζ j ) φ Γ ( ϕ ) + Π 1 ς ϕ + ϑ 1 φ 2 Γ ( ϕ ) Γ ( ϑ ) ( ς φ + e φ ς 1 ) + E 1 E 2 E 5 Δ T ϕ 1 ( 1 e φ T ) φ Γ ( ϕ ) , O 1 = ( φ 1 + e φ ) φ 2 E 1 E 1 E 2 E 4 Δ T ω 1 ( 1 e φ T ) φ Γ ( ω ) + E 1 E 2 E 5 Δ Υ 2 j = 1 k 2 | ν j | ζ j ω ( 1 e φ ζ j ) φ Γ ( ω ) + Π 2 ϱ ω + ϑ 1 φ 2 Γ ( ω ) Γ ( ϑ ) ( ϱ φ + e φ ϱ 1 ) , P 2 = ( φ 1 + e φ ) φ 2 Δ E 4 E 6 T ψ 1 ( 1 e φ T ) φ Γ ( ψ ) + E 1 E 4 Υ 3 j = 1 k 2 | σ j | ζ j ψ ( 1 e φ ζ j ) φ Γ ( ψ ) + Π 3 δ ψ + ϑ 1 φ 2 Γ ( ψ ) Γ ( ϑ ) ( δ φ + e φ δ 1 ) , Q 2 = ( φ 1 + e φ ) φ 2 Δ E 4 E 6 Υ 1 j = 1 k 2 | ξ j | ζ j ( 1 e φ ζ j ) φ Γ ( ϕ ) + Π 1 ς ϕ + ϑ 1 φ 2 Γ ( ϕ ) Γ ( ϑ ) ( ς φ + e φ ς 1 ) + E 1 E 5 T ϕ 1 ( 1 e φ T ) φ Γ ( ϕ ) + ( 1 e φ ) φ Γ ( ϕ ) , O 2 = ( φ 1 + e φ ) φ 2 Δ E 1 E 4 T ω 1 ( 1 e φ T ) φ Γ ( ω ) + E 1 E 5 Υ 2 j = 1 k 2 | ν j | ζ j ω ( 1 e φ ζ j ) φ Γ ( ω ) + Π 2 ϱ ω + ϑ 1 φ 2 Γ ( ω ) Γ ( ϑ ) ( ϱ φ + e φ ϱ 1 ) , P 3 = ( φ 2 2 φ + 2 2 e φ ) φ 3 Δ E 3 E 6 T ψ 1 ( 1 e φ T ) φ Γ ( ψ ) + E 1 E 3 Υ 3 j = 1 k 2 | σ j | ζ j ψ ( 1 e φ ζ j ) φ Γ ( ψ ) + Π 3 δ ψ + ϑ 1 φ 2 Γ ( ψ ) Γ ( ϑ ) ( δ φ + e φ δ 1 ) , Q 3 = ( φ 2 2 φ + 2 2 e φ ) φ 3 Δ E 3 E 6 Υ 1 j = 1 k 2 | ξ j | ζ j ϕ ( 1 e φ ζ j ) φ Γ ( ϕ ) + Π 1 ς ϕ + ϑ 1 φ 2 Γ ( ϕ ) Γ ( ϑ ) ( ς φ + e φ ς 1 ) + E 2 E 6 T ϕ 1 ( 1 e φ T ) φ Γ ( ϕ ) , O 3 = ( φ 2 2 φ + 2 2 e φ ) φ 3 Δ E 1 E 3 T ω 1 ( 1 e φ T ) φ Γ ( ω ) + E 2 E 6 Υ 2 j = 1 k 2 | ν j | ζ j ω ( 1 e φ ζ j ) φ Γ ( ω ) + Π 2 ϱ ω + ϑ 1 φ 2 Γ ( ω ) Γ ( ϑ ) ( ϱ φ + e φ ϱ 1 ) + ( 1 e φ ) φ Γ ( ω ) .
M 1 = ( P 1 + P 2 + P 3 ) | | P 1 | | ( U 1 ( N ) + V 1 ( N ) + W 1 ( N ) ) + ( Q 1 + Q 2 + Q 3 ) | | P 2 | | ( U 2 ( N ) + V 2 ( N ) + W 2 ( N ) ) + ( O 1 + O 2 + O 3 ) | | P 3 | | ( U 3 ( N ) + V 3 ( N ) + W 3 ( N ) )
Next, we define the operators K 1 , K 2 , K 3 : J ^ × J ^ × J ^ P ( J ^ × J ^ × J ^ ) as follows:
Then, we define an operator K : J ^ × J ^ × J ^ P ( J ^ × J ^ × J ^ ) by
K ( Z , Q , Y ) ( ϖ ) = K 1 ( Z , Q , Y ) ( ϖ ) K 2 ( Z , Q , Y ) ( ϖ ) K 3 ( Z , Q , Y ) ( ϖ ) ,
K 1 = { h 1 J ^ × J ^ × J ^ : there   exist f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , h S F 3 , ( Z , Q , Y ) , such   that h 1 ( Z , Q , Y ) ( ϖ ) = Q 1 ( Z , Q , Y ) ( ϖ ) , τ [ 0 , T ] } ,
K 2 = { h 2 J ^ × J ^ × J ^ : there   exist f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , h S F 3 , ( Z , Q , Y ) , such   that h 2 ( Z , Q , Y ) ( ϖ ) = Q 2 ( Z , Q , Y ) ( ϖ ) , τ [ 0 , T ] } ,
and
K 3 = { h 3 J ^ × J ^ × J ^ : there   exist f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , h S F 3 , ( Z , Q , Y ) , such   that h 3 ( Z , Q , Y ) ( ϖ ) = Q 3 ( Z , Q , Y ) ( ϖ ) , τ [ 0 , T ] } ,

3.1. The Caratheodory Case

Our first result dealing with convex values f , g , and h is proved via the Leray–Schauder non-linear alternative for multi-valued maps.
Theorem 1.
Suppose that the following conditions are satisfied:
( B 1 ) f , g , h : [ 0 , T ] × R 3 P ( R ) are L 1 Caratheodory and have convex values;
( B 2 ) There exist continuous non-decreasing functions U 1 , U 2 , U 3 , V 1 , V 2 , V 3 , W 1 , W 2 , W 3 : [ 0 , ) ( 0 , ) functions P 1 ( ϖ ) , P 2 ( ϖ ) , P 3 ( ϖ ) ( C [ 0 , T ] × R + ) , such that
| | F 1 ( ϖ , Z , Q , Y ) | | P : = sup { | f | : f F 1 ( ϖ , Z , Q , Y ) } P 1 [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] , | | F 2 ( ϖ , Z , Q , Y ) | | P : = sup { | g | : g F 2 ( ϖ , Z , Q , Y ) } P 2 [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] ,
and
| | F 3 ( ϖ , Z , Q , Y ) | | P : = sup { | h | : h F 3 ( ϖ , Z , Q , Y ) } P 3 [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] ,
for each ( ϖ , Z , Q , Y ) [ 0 , T ] × R e 3 ; ( B 3 ) there exists a number N > 0 , such that
N M 1 > 1 ,
where P i , Q i , and O i are given by (10). The tripled system has at least one solution on [ 0 , T ] .
Proof. 
Consider the operator K 1 × K 2 × K 3 : J ^ × J ^ × J ^ P ( J ^ × J ^ × J ^ ) defined by (11)–(13). From ( B 1 ) , it follows that sets S F 1 , ( Z , Q , Y ) , S F 2 , ( Z , Q , Y ) and S F 3 , ( Z , Q , Y ) are non-empty for each ( Z , Q , Y ) J ^ × J ^ × J ^ . Then, for f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , h S F 3 , ( Z , Q , Y ) for ( Z , Q , Y ) J ^ × J ^ × J ^ , we have
H 1 ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ ,
and
H 2 ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ ,
and
H 3 ( Z , Q , Y ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ ,
where H 1 K 1 ( Z , Q , Y ) ( τ ) , H 2 K 2 ( Z , Q , Y ) ( τ ) , H 3 K 3 ( Z , Q , Y ) ( τ ) , and ( H 1 , H 2 , H 3 ) K ( Z , Q , Y ) ( ϖ ) .
For the applicability of Leray–Schauder non-linear alternative we split our proof into several steps.
Claim 1. The operator K ( Z , Q , Y ) is convex. Let ( H i , H ¯ i , H ^ i ) ( K 1 , K 2 , K 3 ) , i = 1 , 2 . Then there exist f i S F 1 , ( Z , Q , Y ) , g i S F 2 , ( Z , Q , Y ) , h i S F 3 , ( Z , Q , Y ) , i = 1 , 2 , such that, for each τ [ 0 , T ] , we have
H i ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ ,
H i ¯ ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ ,
and
H i ^ ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ ,
Let 0 ω 1 . Then, for each τ [ 0 , T ] , we have [ ω F 1 ( a ) + ( 1 ω ) F 2 ( a ) ]
[ ω H 1 + ( 1 ω ) H 2 ] ( τ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( m ) + ( 1 ω ) g 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) [ ω h 1 ( m ) + ( 1 ω ) h 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( m ) + ( 1 ω ) g 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( m ) + ( 1 ω ) f 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ ,
and
[ ω H ¯ 1 + ( 1 ω ) H ¯ 2 ] ( τ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) [ ω h 1 ( m ) + ( 1 ω ) h 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( m ) + ( 1 ω ) g 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( m ) + ( 1 ω ) f 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ ,
[ ω H ^ 1 + ( 1 ω ) H ^ 2 ] ( τ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( m ) + ( 1 ω ) g 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( τ ) + ( 1 ω ) f 2 ( τ ) ] d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) [ ω f 1 ( m ) + ( 1 ω ) f 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) [ ω h 1 ( m ) + ( 1 ω ) h 2 ( m ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) [ ω g 1 ( τ ) + ( 1 ω ) g 2 ( τ ) ] d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) [ ω h 1 ( τ ) + ( 1 ω ) h 2 ( τ ) ] d τ d ρ ,
We deduce that S F 1 , ( Z , Q , Y ) , S F 2 , ( Z , Q , Y ) and S F 3 , ( Z , Q , Y ) are convex valued, since f , g , h are convex valued. obviously, [ ω H 1 + ( 1 ω ) H 2 ] ( τ ) K 1 , [ ω H ¯ 1 + ( 1 ω ) H ¯ 2 ] ( τ ) K 2 , and [ ω H ¯ 1 + ( 1 ω ) H ¯ 2 ] ( τ ) K 3 hence [ ω ( H 1 , H 2 , H 3 ) + ( 1 ω ) ( h ¯ 1 , h ¯ 2 , H 3 ^ ) ] ( τ ) K .
Claim 2. We show that the operator K maps bounded sets into bounded sets in J ^ × J ^ × J ^ . Let τ > 0 , define B r = { ( Z , Q , Y ) J ^ × J ^ × J ^ : | | ( Z , Q , Y ) | | r } be a bounded set in J ^ × J ^ × J ^ . Then, there exist f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) and h S F 3 , ( Z , Q , Y ) , such that
H 1 ( Z , Q , Y ) ( τ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) | | P 2 | | [ U 2 ( r ) + V 2 ( r ) + W 2 ( r ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) | | P 2 | | [ U 2 ( r ) + V 2 ( r ) + W 2 ( r ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) | | P 1 | | [ U 1 ( r ) + V 1 ( r ) + W 1 ( r ) ] d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) | | P 3 | | [ U 3 ( r ) + V 3 ( r ) + W 3 ( r ) ] d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) | | P 3 | | [ U 3 ( r ) + V 3 ( r ) + W 3 ( r ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) | | P 2 | | [ U 2 ( r ) + V 2 ( r ) + W 2 ( r ) ] d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) | | P 2 | | [ U 2 ( r ) + V 2 ( r ) + W 2 ( r ) ] d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) | | P 2 | | [ U 2 ( r ) + V 2 ( r ) + W 2 ( r ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) | | P 1 | | [ U 1 ( r ) + V 1 ( r ) + W 1 ( r ) ] d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) | | P 1 | | [ U 1 ( r ) + V 1 ( r ) + W 1 ( r ) ] d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) | | P 1 | | [ U 1 ( r ) + V 1 ( r ) + W 1 ( r ) ] d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) | | P 3 | | [ U 3 ( r ) + V 3 ( r ) + W 3 ( r ) ] d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) | | P 1 | | [ U 1 ( r ) + V 1 ( r ) + W 1 ( r ) ] d τ d ρ , P 1 | | P 1 | | U 1 ( r ) + V 1 ( r ) + W 1 ( r ) + Q 1 | | P 2 | | U 2 ( r ) + V 2 ( r ) + W 2 ( r ) + O 1 | | P 3 | | U 3 ( r ) + V 3 ( r ) + W 3 ( r ) ,
| H 2 ( Z , Q , Y ) ( τ ) | P 2 | | P 1 | | U 1 ( r ) + V 1 ( r ) + W 1 ( r ) + Q 2 | | P 2 | | U 2 ( r ) + V 2 ( r ) + W 2 ( r ) + O 2 | | P 3 | | U 3 ( r ) + V 3 ( r ) + W 3 ( r ) .
and
| H 3 ( Z , Q , Y ) ( τ ) | P 3 | | P 1 | | U 1 ( r ) + V 1 ( r ) + W 1 ( r ) + Q 3 | | P 2 | | U 2 ( r ) + V 2 ( r ) + W 2 ( r ) + O 3 | | P 3 | | U 3 ( r ) + V 3 ( r ) + W 3 ( r ) .
Hence we obtain
| | ( H 1 , H 2 , H 3 ) | | = | | H 1 ( Z , Q , Y ) | | + | | H 2 ( Z , Q , Y ) | | + | | H 3 ( Z , Q , Y ) | |
( P 1 + P 2 + P 3 ) | | P 1 | | ( U 1 ( N ) + V 1 ( N ) + W 1 ( N ) ) + ( Q 1 + Q 2 + Q 3 ) | | P 2 | | ( U 2 ( N ) + V 2 ( N ) + W 2 ( N ) ) + ( O 1 + O 2 + O 3 ) | | P 3 | | ( U 3 ( N ) + V 3 ( N ) + W 3 ( N ) ) .
Claim 3. We show the equi-continuity of the operator K . Let ϖ 1 , ϖ 2 [ 0 , T ] with ϖ 1 < ϖ 2 . Then there exist f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , and h S F 3 , ( Z , Q , Y ) , such that
H 1 ( Z , Q , Y ) ( ϖ 2 ) H 1 ( Z , Q , Y ) ( ϖ 1 ) | | P 1 | | U 1 ( r ) + V 1 ( r ) + W 1 ( r ) Γ ( ψ ) 0 ϖ 1 [ ( ϖ 2 s ) ψ 1 ( ϖ 1 s ) ψ 1 ] d s + 0 ϖ 1 [ ( ϖ 2 s ) ψ 1 ( ϖ 1 s ) ψ 1 ] d s | | P 1 | | U 1 ( r ) + V 1 ( r ) + W 1 ( r ) 2 ( ϖ 2 ϖ 1 ) ψ + | ϖ 2 ψ ϖ 1 ψ | Γ ( ψ + 1 ) ,
and,
H 2 ( Z , Q , Y ) ( ϖ 2 ) H 2 ( Z , Q , Y ) ( ϖ 1 ) | | P 2 | | U 2 ( r ) + V 2 ( r ) + W 2 ( r ) 2 ( ϖ 2 ϖ 1 ) ϕ + | ϖ 2 ϕ ϖ 1 ϕ | Γ ( ϕ + 1 ) .
Similar,
H 3 ( Z , Q , Y ) ( ϖ 2 ) H 3 ( Z , Q , Y ) ( ϖ 1 ) | | P 3 | | U 3 ( r ) + V 3 ( r ) + W 3 ( r ) 2 ( ϖ 2 ϖ 1 ) ω + | ϖ 2 ω ϖ 1 ω | Γ ( ω + 1 ) .
Therefore, the operator K ( Z , Q , Y ) is equi-continuous, based on Arzela–Ascoli K ( Z , Q , Y ) is completely continuous. We know that a completely continuous operator is upper semi-continuous if it has a closed graph. Thus, we need to prove that K has a closed graph.
Claim 4. We show that the operator K has closed graph. As it is known that a completely continuous operator is upper semi-continuous if it has a closed graph. For this we take ( Z n , Q n , Y n ) ( Z * , Q * , Y * ) , ( H n , H ¯ n , H n ^ ) K ( Z n , Q n , Y n ) and ( H n , H ¯ n , H n ^ ) ( H * , H ¯ * , H * ^ ) , then we need to show ( H * , H ¯ * , H * ^ ) K ( Z * , Q * , Y * ) . Observe that ( H n , H ¯ n , H n ^ ) K ( Z n , Q n , Y n ) implies that exist f n S F 1 , ( Z n , Q n , Y n ) , g n S F 2 , ( Z n , Q n , Y n ) , and h n S F 3 , ( Z n , Q n , Y n ) such that
H n ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ ,
and
H ¯ n ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ ,
H ^ n ( Z n , Q n , Y n ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ ,
Let us consider the continuous linear operator Φ 1 , Φ 2 , Φ 3 : L 1 ( [ 0 , T ] , J ^ × J ^ × J ^ ) C ( [ 0 , T ] , J ^ × J ^ × J ^ ) given by
Φ 1 ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ ,
and
Φ 2 ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ ,
and
Φ 3 ( Z , Q , Y ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) g ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) f ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) f ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) h ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) g ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) h ( τ ) d τ d ρ ,
From, we know that ( Φ 1 , Φ 2 , Φ 3 ) ( S F 1 , S F 2 , S F 3 ) is closed graph operator. Further, we have ( H n , H ¯ n , H n ^ ) ( Φ 1 , Φ 2 , Φ 3 ) ( S F 1 , ( Z n , Q n Y n ) , S F 2 , ( Z n , Q n Y n ) , S F 3 , ( Z n , Q n , Y n ) ) for all n. Since ( Z n , Q n Y n ) ( Z * , Q * , Y * ) , ( H n , H ¯ n , H n ^ ) ( H * , H ¯ * , H n ^ ) it follows that f * S F 1 , ( Z , Q , Y ) and g * S F 2 , ( Z , Q , Y ) , and h * S F 3 , ( Z , Q , Y ) , such that
H * ( Z * , Q * , Y * ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ ,
and
H ¯ * ( Z * , Q * , Y * ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ ,
H ^ * ( Z * , Q * , Y * ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) * ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) * ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) * ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) * ( τ ) d τ d ρ ,
that is, ( H n , H ¯ n , H n ^ ) K ( Z * , Q * , Y * ) .
Exists with: let ( Z , Q , Y ) ν K ( Z , Q , Y ) . this implies that the function f S F 1 , ( Z , Q , Y ) , g S F 2 , ( Z , Q , Y ) , and h S F 3 , ( Z , Q , Y ) exists with:
| | Z | | P 1 | | P 1 | | [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] + Q 1 | | P 2 | | [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] + O 1 | | P 3 | | [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] ,
| | Q | | P 2 | | P 1 | | [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] + Q 2 | | P 2 | | [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] + O 2 | | P 3 | | [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] ,
and
| | Y | | P 3 | | P 1 | | [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] + Q 3 | | P 2 | | [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] + O 3 | | P 3 | | [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] ,
following the same arguments
| | ( Z , Q , Y ) | | = | | Z | | + | | Q | | + | | Y | | ( P 1 + P 2 + P 3 ) | | P 1 | | [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] + ( Q 1 + Q 2 + Q 3 ) | | P 2 | | [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] + ( O 1 + O 2 + O 3 ) | | P 3 | | [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] .
which implies that
| | ( Z , Q , Y ) | | ( P 1 + P 2 + P 3 ) | | P 1 | | [ U 1 ( | | Z | | ) + V 1 ( | | Q | | ) + W 1 ( | | Y | | ) ] + ( Q 1 + Q 2 + Q 3 ) | | P 2 | | [ U 2 ( | | Z | | ) + V 2 ( | | Q | | ) + W 2 ( | | Y | | ) ] + ( O 1 + O 2 + O 3 ) | | P 3 | | [ U 3 ( | | Z | | ) + V 3 ( | | Q | | ) + W 3 ( | | Y | | ) ] 1 .
In the light of B 3 we can find N with | | ( Z , Q , Y ) | | N . Consider
Λ = { ( Z , Q , Y ) J ^ × J ^ × J ^ : | | ( Z , Q , Y ) | | < N } .
Here, K : Λ ¯ P c p , c v ( J ^ ) × P c p , c v ( J ^ ) × P c p , c v ( J ^ ) is completely continuous and upper semi-continuous. There is no ( Z , Q , Y ) ν K ( Z , Q , Y ) for some ν ( 0 , 1 ) depending on choosing of Λ .
So, by the non-linear alternative of Leray–Schauder type, we conclude that K has it least one fixed point ( Z , Q , Y ) Λ ¯ , this solution of problem (1). By this, we finalize the proof. □

3.2. The Case of Libschitz

Here, we consider the situation where there are non-convex values in the multi valued maps of system (1).
Consider the metric space ( E , d ) which is induced from the normed space ( E ; | | . | | ) , and consider H d : P ( E ) × P ( E ) R e be given by H d ( U , V ) = max { sup Y U d ( Y , V ) , sup ν V d ( U , ν ) } , where d ( U , ν ) = inf Y U d ( Y , ν ) and d ( ν , V ) = inf ν V d ( Y , ν ) .
So ( P b , c l ( E ) , H d ) is a metric space and ( P c l ( E ) , H d ) is a generalized one.
In the upcoming result, we take advantage of Covitz and Nadler’s fixed point theorem for multi-valued maps.
Theorem 2. 
( B 4 ) F 1 , F 2 , F 3 : [ 0 , T ] × R e 3 P c p ( R e ) are such that F 1 ( . , Z , Q , Y ) : [ 0 , T ] P c p ( R e ) , F 2 ( . , Z , Q , Y ) : [ 0 , T ] P c p ( R e ) , and F 3 ( . , Z , Q , Y ) : [ 0 , T ] P c p ( R e ) are measurable for each Z , Q , Y R e ;
( B 5 )
H d ( F 1 ( ϖ , Z , Q , Y ) , F 1 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 1 ( ϖ ) ( | Z Z ¯ | + | Q X ¯ | + | Y Y ¯ | ) ,
H d ( F 2 ( ϖ , Z , Q , Y ) , F 2 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 2 ( ϖ ) ( | Z Z ¯ | + | Q X ¯ | + | Y Y ¯ | ) ,
and
H d ( F 3 ( ϖ , Z , Q , Y ) , F 3 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 3 ( ϖ ) ( | Z Z ¯ | + | Q X ¯ | + | Y Y ¯ | ) ,
for the majority of ϖ [ 0 , T ] and Z , Q , Y , Z ¯ , X ¯ , Y ¯ R e with m 1 , m 2 , m 3 C ( [ 0 , T ] , R e + ) and d ( 0 , F 1 ( ϖ , 0 , 0 ) ) m 1 ( ϖ ) , d ( 0 , F 2 ( ϖ , 0 , 0 ) ) m 2 ( ϖ ) , d ( 0 , F 3 ( ϖ , 0 , 0 ) ) m 3 ( ϖ ) for almost ϖ [ 0 , T ] hold, this implies the existence of solution for system (1) on [ 0 , T ] given that
( P 1 + P 2 + P 3 ) | | m 1 | | + ( Q 1 + Q 2 + Q 3 ) | | m 2 | | + ( O 1 + O 2 + O 3 ) | | m 3 | | < 1 .
Proof. 
The sets S f , ( Z , Q , Y ) , S g , ( Z , Q , Y ) and S h , ( Z , Q , Y ) are non-empty for each ( Z , Q , Y ) E × E × E by assumption B 4 , so f , g and h have measurable selections. We now demonstrate that the operator K meets the criteria of Covitz and Nadler’s fixed point theorem.
We start by K ( Z , Q , Y ) P c l ( E ) × P c l ( E ) × P c l ( E ) for each ( Z , Q , Y ) E × E × E . Let ( H n , H ¯ n , H ^ ) K ( Z n , Q n , Y n ) , such that ( H n , H ¯ n , H n ^ ) ( H , H ¯ , H ^ ) in E × E × E . Then ( H , H ¯ , H ^ ) E × E × E and there exists f n S F 1 , ( Z n , Y n , Q n ) , g n S F 2 , ( Z n , Y n , Q n ) , and h n S F 3 , ( Z n , Y n , Q n ) , such that
H n ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ ,
and
H ¯ n ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ ,
H ^ n ( Z n , Q n , Y n ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) n ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) n ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) n ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) n ( τ ) d τ d ρ ,
because of the compact values F 1 , F 2 , and F 3 , we take the sub-sequences to show that f n , g n and h n tends to f , g , and h in L 1 ( [ 0 , T ] , R e ) , respectively. Thus, f S F 1 , ( Z , Y , Q ) , g S F 2 , ( Z , Y , Q ) , and h S F 3 , ( Z , Y , Q ) for each ϖ [ 0 , T ] and that
H n ( Y n , Q n ) ( ϖ ) H ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ ,
and
H ¯ n ( Y n , Q n ) ( ϖ ) H ¯ ( Z , Q , Y ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ ,
H n ^ ( Y n , Q n ) ( ϖ ) H ^ ( Z , Q , Y ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) ( τ ) d τ d ρ ,
So ( H , H ¯ , H n ^ ) K , which guarantees that K is closed. After that, we prove the existence of θ ¯ < 1 , such that
H d K ( Z , Q , Y ) , K ( Z ¯ , X ¯ , Y ¯ ) θ ¯ ( | | Z Z ¯ | | + | | Q X ¯ | | + | | Y Y ¯ | | ) for   each   Z , Z ¯ , Q , X ¯ , Y , Y ¯ J ^ .
Let ( Z , Z ¯ ) , ( Q , X ¯ ) , ( Y , Y ¯ ) J ^ × J ^ × J ^ and ( H 1 , H ¯ 1 , H 1 ^ ) K ( Z , Q , Y ) . then there exist f S F 1 , ( Z , Y , Q ) , g S F 2 , ( Z , Y , Q ) , and h S F 3 , ( Z , Y , Q ) such that, ∀ ϖ [ 0 , T ] , this gives
H 1 ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ ,
H ¯ 1 ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ ,
H ^ 1 ( Z n , Q n , Y n ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 1 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 1 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 1 ( τ ) d τ d ρ ,
By ( B 5 ) , we have
H d ( F 1 ( ϖ , Z , Q , Y ) , F 1 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 1 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
H d ( F 2 ( ϖ , Z , Q , Y ) , F 2 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 2 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
and
H d ( F 3 ( ϖ , Z , Q , Y ) , F 3 ( ϖ , Z ¯ , X ¯ , Y ¯ ) ) m 3 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
So, there f F 1 ( ( ϖ , Z , Q , Y ) ) , g F 2 ( ( ϖ , Z , Q , Y ) ) and h F 3 ( ( ϖ , Z , Q , Y ) ) such that
| f 1 ( ϖ ) γ 1 | m 1 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
| g 1 ( ϖ ) γ 2 | m 2 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
and
| h 1 ( ϖ ) γ 3 | m 3 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | )
Defined V 1 , V 2 , V 3 : [ 0 , T ] P ( R e ) by
V 1 ( ϖ ) = { f L 1 ( [ 0 , T ] , R e ) : | f 1 ( ϖ ) γ 1 | m 1 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) } ,
V 2 ( ϖ ) = { g L 1 ( [ 0 , T ] , R e ) : | g 1 ( ϖ ) γ 2 | m 2 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) } ,
and
V 3 ( ϖ ) = { h L 1 ( [ 0 , T ] , R e ) : | h 1 ( ϖ ) γ 3 | m 3 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) } .
Since the multi-valued operators V 1 ( ϖ ) F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , V 2 ( ϖ ) F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) and V 3 ( ϖ ) F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) are measurable, there exist functions f 2 ( ϖ ) , g 2 ( ϖ ) , h 2 ( ϖ ) which are a measurable selection for V 1 , V 2 , V 3 and f 2 ( ϖ ) F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , g 2 ( ϖ ) F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , h 2 ( ϖ ) F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) such that, for a.e. ϖ [ 0 , T ] , we have
| f 1 ( ϖ ) f 2 ( ϖ ) | m 1 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) ,
| g 1 ( ϖ ) g 2 ( ϖ ) | m 2 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) ,
and
| h 1 ( ϖ ) h 2 ( ϖ ) | m 3 ( ϖ ) ( | Z ( ϖ ) Z ¯ ( ϖ ) | + | Q ( ϖ ) X ¯ ( ϖ ) | + | Y ( ϖ ) Y ¯ ( ϖ ) | ) .
Let
H 2 ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 E 1 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + 1 Δ E 1 E 2 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + E 2 E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + E 1 E 2 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ ,
H ¯ 2 ( Z n , Q n , Y n ) ( ϖ ) = ( φ ϖ 1 + e φ ϖ ) φ 2 Δ E 1 E 5 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + E 4 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + E 1 E 4 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ ,
H ^ 2 ( Z n , Q n , Y n ) ( ϖ ) = ( φ 2 ϖ 2 2 φ ϖ + 2 e φ ϖ ) φ 3 Δ × E 3 E 6 Υ 1 j = 1 k 2 ξ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + Π 1 0 ς ( ς ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + E 1 E 3 Υ 3 j = 1 k 2 σ j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( τ ) d τ d ρ + Π 3 0 δ ( δ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ψ 2 Γ ( ψ 1 ) ( f ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + E 2 E 6 Υ 2 j = 1 k 2 ν j 0 ζ j e φ ( ζ j ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ + Π 2 0 ϱ ( ϱ ρ ) ϑ 1 Γ ( ϑ ) 0 ρ e φ ( ρ τ ) 0 τ ( τ m ) ω 2 Γ ( ω 1 ) ( h ) 2 ( m ) d m d τ d ρ 0 T e φ ( T ρ ) 0 ρ ( ρ τ ) ϕ 2 Γ ( ϕ 1 ) ( g ) 2 ( τ ) d τ d ρ + 0 ϖ e φ ( ϖ ρ ) 0 ρ ( ρ τ ) ω 2 Γ ( ω 1 ) ( h ) 2 ( τ ) d τ d ρ ,
Hence
| | H 1 ( Z , Q , Y ) H 2 ( Z , Q , Y ) | | ( P 1 | | m 1 | | + Q 1 | | m 2 | | + + O 1 | | m 3 | | ) × ( | | Z ( ϖ ) Z ¯ ( ϖ ) | | + | | Q ( ϖ ) X ¯ ( ϖ ) | | + | | Y ( ϖ ) Y ¯ ( ϖ ) | | )
| | H ¯ 1 ( Z , Q , Y ) H ¯ 2 ( Z , Q , Y ) | | ( P 2 | | m 1 | | + Q 2 | | m 2 | | + + O 2 | | m 3 | | ) × ( | | Z ( ϖ ) Z ¯ ( ϖ ) | | + | | Q ( ϖ ) X ¯ ( ϖ ) | | + | | Y ( ϖ ) Y ¯ ( ϖ ) | | )
Similar, we set
| | H 1 ^ ( Z , Q , Y ) H 2 ^ ( Z , Q , Y ) | | ( P 3 | | m 1 | | + Q 3 | | m 2 | | + + O 3 | | m 3 | | ) × ( | | Z ( ϖ ) Z ¯ ( ϖ ) | | + | | Q ( ϖ ) X ¯ ( ϖ ) | | + | | Y ( ϖ ) Y ¯ ( ϖ ) | | )
Thus
| | ( H 1 , H ¯ 1 , H 1 ^ ) , ( H 2 , H ¯ 2 , H 2 ^ ) | | ( P 1 + P 2 + P 3 ) | | m 1 | | + ( Q 1 + Q 2 + Q 3 ) | | m 2 | | + ( O 1 + O 2 + O 3 ) | | m 3 | | × ( | | Z ( ϖ ) Z ¯ ( ϖ ) | | + | | Q ( ϖ ) X ¯ ( ϖ ) | | + | | Y ( ϖ ) Y ¯ ( ϖ ) | | )
likewise, by reversing the roles of ( Z , Q , Y ) and ( Z ¯ , Y ¯ , X ¯ ) , it is possible to obtain
H d [ T ( Z , Q , Y ) , T ( Z ¯ , X ¯ , Y ¯ ) ] ( P 1 + P 2 + P 3 ) | | m 1 | | + ( Q 1 + Q 2 + Q 3 ) | | m 2 | | + ( O 1 + O 2 + O 3 ) | | m 3 | | × ( | | Z ( ϖ ) Z ¯ ( ϖ ) | | + | | Q ( ϖ ) X ¯ ( ϖ ) | | + | | Y ( ϖ ) Y ¯ ( ϖ ) | | ) .
In light of the assumption, K is a contraction. Therefore, according to Covitz and Nadler’s fixed point theorem, it has a fixed point ( Z , Q , Y ) that is a solution to problem (1). This concludes the proof. □

4. Example

Example 1.
In consistence with systems (1) the along with the main mentioned theorems, we present an example in this section.
( c D ψ + φ c D ψ 1 ) Z ( ϖ ) F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 2 < ψ 3 , ( c D ϕ + φ c D ϕ 1 ) Q ( ϖ ) F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 2 < ϕ 3 , ( c D ω + φ c D ω 1 ) Y ( ϖ ) F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) , 3 < ω 4 , Z ( 0 ) = 0 , Z ( 0 ) = 0 , Z ( T ) = Υ 1 j = 1 k 2 ξ j Q ( ζ j ) + Π 1 I ς Q ( ϑ ) , Q ( 0 ) = 0 , Q ( 0 ) = 0 , Q ( T ) = Υ 2 j = 1 k 2 ν j Y ( ζ j ) + Π 2 I ϱ Y ( ϑ ) , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( 0 ) = 0 , Y ( T ) = Υ 3 j = 1 k 2 σ j Z ( ζ j ) + Π 3 I δ Z ( ϑ ) ,
Here ψ = 7 3 , ϕ = 5 2 , ω = 10 3 ; ς = 9 / 20 ; ϱ = 11 / 20 ; δ = 13 / 20 ; ϑ = 93 / 50 ; ζ j = 36 / 25 ; Υ 1 = 17 / 400 ; Υ 2 = 15 / 300 ; Υ 3 = 13 / 200 ; Π 1 = 17 / 200 ; Π 2 = 8 / 125 ; Π 3 = 6 / 68 ; T = 1 ; ζ 1 = 1 / 20 ; ζ 2 = 2 / 20 ; ν 1 = 1 / 100 ; ν 2 = 1 / 50 ; σ 1 = 1 / 1000 ; σ 2 = 1 / 500 ; k = 4 ; Δ = 0.067506818609056 with the given data, it is found that
P 1 = 1.79143780787545 , P 2 = 0.83611149394660 , P 3 = 0.522203861964576 , Q 1 = 0.400530445936702 , Q 2 = 1.56029202354379 , Q 3 = 0.109316638513044 , O 1 = 0.190264056004677 , O 2 = 0.748929077567517 , O 3 = 0.745842301275926 .
To illustrate the use of Theorem 1, we will consider
F 1 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) = 0 , 1 12 + ϖ 2 | Z | 1 + | Z | + | sin ( Q ) | 1 + | sin ( Q ) | + tan 1 ( Y ( ϖ ) ) , 1 15 + ϖ F 2 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) = 0 , e 2 ϖ 2 1600 + ϖ 1 270 sin Z ( ϖ ) + | Q | 1 + | Q | + | cos ( Y ) | 1 + | cos ( Y ) | , 1 15 + ϖ F 3 ( ϖ , Z ( ϖ ) , Q ( ϖ ) , Y ( ϖ ) ) = 0 , 1 2 400 + ϖ 2 1 270 sin ( Z ) + | tan ( Q ) | 1 + | tan ( Q ) | + | Y | 1 + | Y | , 1 15 + ϖ .
Clearly, utilizing the above data, we obtain
( P 1 + P 2 + P 3 ) | | m 1 | | + ( Q 1 + Q 2 + Q 3 ) | | m 2 | | + ( O 1 + O 2 + O 3 ) | | m 3 | | 0.3304803666 < 1 .
All the conditions of Theorem 1, we will consider.

5. Conclusions

In this study, we investigated the existence of solutions for tripled fractional differential inclusions with fractional derivatives of different orders and non-local boundary conditions featuring fractional derivatives and integrals. The existence of both convex and non-convex multi-valued maps was established using the non-linear alternative of Kakutani maps and Covitz and Nadler’s fixed point theorem, see [30].

Author Contributions

Software, M.M.; Resources, M.A.; Writing—original draft, M.M.; Writing—review & editing, M.A.; Funding acquisition, M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. 2546].

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

All authors have no conflict of interest.

References

  1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; p. 204. [Google Scholar]
  2. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
  3. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science Publishers: Yverdon-les-Bains, Switzerland, 1993; Volume 1. [Google Scholar]
  4. Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
  5. Covitz, H.; Nadler, S.B. Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 1970, 8, 5–11. [Google Scholar] [CrossRef]
  6. Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1980; Volume 66. [Google Scholar]
  7. Abuasbeh, K.; Mahmudov, N.I.; Awadalla, M. Fractional Stochastic Integro-Differential Equations with Nonintantaneous Impulses: Existence, Approximate Controllability and Stochastic Iterative Learning Control. Fractal Fract. 2023, 7, 87. [Google Scholar] [CrossRef]
  8. Salem, A.; Almaghamsi, L. Existence solution for coupled system of Langevin fractional differential equations of caputo type with Riemann–Stieltjes integral boundary conditions. Symmetry 2021, 13, 2123. [Google Scholar] [CrossRef]
  9. Zhang, Y. Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance. J. Inequal. Appl. 2018, 2018, 198. [Google Scholar] [CrossRef]
  10. Cui, M.; Zhu, Y.; Pang, H. Existence and uniqueness results for a coupled fractional order systems with the multi-strip and multi-point mixed boundary conditions. Adv. Differ. Equ. 2017, 2017, 224. [Google Scholar] [CrossRef]
  11. Manigandan, M.; Muthaiah, S.; Nandhagopal, T.; Vadivel, R.; Unyong, B.; Gunasekaran, N. Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Math. 2022, 7, 723–755. [Google Scholar] [CrossRef]
  12. Su, X. Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 2009, 22, 64–69. [Google Scholar] [CrossRef]
  13. Subramanian, M.; Manigandan, M.; Tunç, C.; Gopal, T.N.; Alzabut, J. On system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order. J. Taibah Univ. Sci. 2022, 16, 1–23. [Google Scholar] [CrossRef]
  14. Hamoud, A.A. Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations. Adv. Theory Nonlinear Anal. Its Appl. 2020, 4, 321–331. [Google Scholar] [CrossRef]
  15. Jung, C.Y.; Farid, G.; Yasmeen, H.; Lv, Y.P.; Pečarić, J. Refinements of some fractional integral inequalities for refined (ψ,hm)-convex function. Adv. Differ. Equ. 2021, 2021, 391. [Google Scholar] [CrossRef]
  16. Liu, Y. A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications. Adv. Nonlinear Anal. 2019, 8, 386–454. [Google Scholar] [CrossRef]
  17. Guechi, S.; Dhayal, R.; Debbouche, A.; Malik, M. Analysis and optimal control of ϕ-Hilfer fractional semilinear equations involving nonlocal impulsive conditions. Symmetry 2021, 13, 2084. [Google Scholar] [CrossRef]
  18. Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 2006, 45, 765–771. [Google Scholar] [CrossRef]
  19. Ahmad, B.; Nieto, J.J. Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2012, 64, 3046–3052. [Google Scholar] [CrossRef]
  20. Al Elaiw, A.; Manigandan, M.; Awadalla, M.; Abuasbeh, K. Existence results by Mönch’s fixed point theorem for a tripled system of sequential fractional differential equations. AIMS Math. 2023, 8, 3969–3996. [Google Scholar] [CrossRef]
  21. Luca, R. On a system of Riemann–Liouville fractional differential equations with coupled nonlocal boundary conditions. Adv. Differ. Equ. 2021, 2021, 134. [Google Scholar] [CrossRef]
  22. Awadalla, M.; Manigandan, M. Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions. Math. Probl. Eng. 2022, 2022, 3999829. [Google Scholar] [CrossRef]
  23. Etemad, S.; Tellab, B.; Alzabut, J.; Rezapour, S.; Abbas, M.I. Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Adv. Differ. Equ. 2021, 2021, 428. [Google Scholar] [CrossRef]
  24. Baeza, L.; Ouyang, H. A railway track dynamics model based on modal substructuring and a cyclic boundary condition. J. Sound Vib. 2011, 330, 75–86. [Google Scholar] [CrossRef]
  25. Matar, M.M.; Amra, I.A.; Alzabut, J. Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions. Bound. Value Probl. 2020, 2020, 140. [Google Scholar] [CrossRef]
  26. Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. Theory Methods Appl. 2011, 74, 4889–4897. [Google Scholar] [CrossRef]
  27. Karakaya, K.; Bouzara, N.E.; DoLan, K.; Atalan, Y. Existence of tripled fixed points for a class of condensing operators in Banach spaces. Sci. World J. 2014, 2014, 541862. [Google Scholar] [CrossRef] [PubMed]
  28. Ahmad, B.; Hamdan, S.; Alsaedi, A.; Ntouyas, S.K. A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions. Adv. Differ. Equ. 2021, 2021, 278. [Google Scholar] [CrossRef]
  29. Sitho, S.; Ntouyas, S.K.; Samadi, A.; Tariboon, J. Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics 2021, 9, 1001. [Google Scholar] [CrossRef]
  30. Hakkar, N.; Dhayal, R.; Debbouche, A.; Torres, D.F. Approximate Controllability of Delayed Fractional Stochastic Differential Systems with Mixed Noise and Impulsive Effects. Fractal Fract. 2023, 7, 104. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Awadalla, M.; Manigandan, M. Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions. Fractal Fract. 2023, 7, 182. https://doi.org/10.3390/fractalfract7020182

AMA Style

Awadalla M, Manigandan M. Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions. Fractal and Fractional. 2023; 7(2):182. https://doi.org/10.3390/fractalfract7020182

Chicago/Turabian Style

Awadalla, Muath, and Murugesan Manigandan. 2023. "Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions" Fractal and Fractional 7, no. 2: 182. https://doi.org/10.3390/fractalfract7020182

APA Style

Awadalla, M., & Manigandan, M. (2023). Existence Results for Caputo Tripled Fractional Differential Inclusions with Integral and Multi-Point Boundary Conditions. Fractal and Fractional, 7(2), 182. https://doi.org/10.3390/fractalfract7020182

Article Metrics

Back to TopTop