A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations
Abstract
:1. Introduction
2. Properties of Lucas Polynomials
3. Technique of Solution
4. Error Analysis
5. Numerical Examples
6. Conclusions
Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hursan, G.; Zhdanov, M.S. Contraction integral equation method in three-dimensional electromagnetic modeling. Radio Sci. 2002, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pachpatte, B.G. Multidimensional Integral Equations and Inequalities; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cheng, Z. Quantum effects of thermal radiation in a Kerr nonlinear blackbody. J. Optical Soc. Amer. B 2002, 19, 1692–1705. [Google Scholar] [CrossRef]
- Chew, W.C.; Tong, M.S.; Hu, B. Integral Equation Methods for Electromagnetic and Elastic Waves. Synth. Lect. Comput. Elect. 2008, 3, 1–241. [Google Scholar]
- Guoqiang, H.; Hayami, K.; Sugihara, K.; Jiong, W. Extrapolation method of iterated collocation solution for two-dimensional nonlinear Volterra integral equations. App. Math. Comput. 2009, 112, 70–76. [Google Scholar] [CrossRef]
- Bazm, S. Numerical solution of a class of nonlinear two-dimensional integral equations using bernoulli polynomials. Sahand Commun. Math. Anal. (SCMA) 2016, 3, 37–51. [Google Scholar]
- Babaaghaie, A.; Maleknejad, K. A new approach for numerical solution of two-dimensional nonlinear Fredholm integral equations in the most general kind of kernel, based on Bernstein polynomials and its convergence analysis. J. Comput. Appl. Math. 2018, 344, 482–494. [Google Scholar] [CrossRef]
- Ziqan, A.; Armiti, S.; Suwan, I. Solving three-dimensional Volterra integral equation by the reduced differential transform method. Int. J. Of Applied Math. Res. 2016, 5, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Basseem, M. Degenerate Kernel Method for Three Dimension Nonlinear Integral Equations of the Second Kind. Univers. J. Integral Equations 2015, 3, 61–66. [Google Scholar]
- Kazemia, M.; Torkashvand, V.; Ezzati, R. A new method for solving three-dimensional nonlinear Fredholm integral equations by Haar wavelet. Int. J. Nonlinear Anal. Appl. 2021, 12, 115–133. [Google Scholar]
- Manafian, J.; Bolghar, P. Numerical solutions of nonlinear 3-dimensional Volterra integral-differential equations with 3D-block-pulse functions. Math. Meth. Appl. Sci. 2018, 41, 4867–4876. [Google Scholar] [CrossRef]
- Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Numerical solution of three-dimensional Volterra-Fredholm integral equations of the first and second kinds based on Bernsteins approximation. Appl. Math. Comput. 2018, 339, 272–285. [Google Scholar]
- Mirzaee, F.; Hadadiyan, E. A computational method for nonlinear mixed Volterra-Fredholm integral equations. CJMS 2013, 2, 113–123. [Google Scholar]
- Mirzaee, F.; Hadadiyan, E. Three-dimensional triangular functions and their applications for solving nonlinear mixed Volterra-Fredholm integral equations. Alex. Eng. J. 2016, 55, 2943–2952. [Google Scholar] [CrossRef] [Green Version]
- Mirzaee, F.; Hadadiyan, E. Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations. Appl. Math. Comput. 2015, 265, 759–767. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Youssri, Y.H. Generalized Lucas polynomial sequence approach for fractional differential equations. Nonlinear Dyn. 2017, 89, 1341–1355. [Google Scholar] [CrossRef]
- Abd-elhameed, W.M.; Youssri, Y.H. Spectral solutions for fractional differential equations via a novel lucas operational matrix of fractional derivatives. Rom. J. Phys. 2016, 61, 795–813. [Google Scholar]
- Cetin, M.; Sezer, N.; Gler, C. Lucas Polynomial Approach for System of High-Order Linear Differential Equations and Residual Error Estimation. Math. Eng. 2015, 2015, 625984. [Google Scholar]
- Baykus, N.M. Sezer: Hybrid Taylor-Lucas collocation method for numerical solution of high-order pantograph type delay differential equations with variables delays. Appl. Math. Inf. Sci. 2017, 11, 1795–1801. [Google Scholar] [CrossRef]
- Nadir, M. Lucas polynomials for solving linear integral equations. Theor. Appl. Comput. Sci. 2017, 11, 13–19. [Google Scholar]
- Haq, S.; Ali, I. Approximate solution of two.dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials. Eng. Comput. 2021, 3, 2059–2068. [Google Scholar]
- Ali, I.; Haq, S.; Nisar, K.S.; Arifeen, S. Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials. Arab. J. Math. 2021, 10, 513–526. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley-Interscience Publication: New York, NY, USA, 2001. [Google Scholar]
- Mahdy, A.M.S.; Shokry, D.; Lotfy, K. Chelyshkov polynomials strategy for solving 2-dimensional nonlinear Volterra integral equations of the first kind. Comput. Appl. Math. 2022, 41, 1–13. [Google Scholar] [CrossRef]
- Mahdy, A.M.S.; Mohamed, D.S. Approximate solution of Cauchy integral equations by using Lucas polynomials. Comput. Appl. Math. 2022, 41, 1–20. [Google Scholar] [CrossRef]
- Youssri, Y.H.; Sayed, S.H.M.; Mohamed, A.S.; Aboeldahab, M.E.; Abd-Elhameed, W.M. Modified Lucas polynomials for the numerical treatment of second-order boundary value problems. Comput. Differ. Equations 2023, 11, 12–31. [Google Scholar]
Polynomials’ Lucas | Coefficients’ Array | |||||
---|---|---|---|---|---|---|
1 | ||||||
1 | 2 | |||||
1 | 3 | |||||
1 | 4 | 2 | ||||
1 | 5 | 5 | ||||
1 | 6 | 9 | 2 | |||
1 | 7 | 14 | 7 | |||
1 | 8 | 20 | 16 | 2 | ||
1 | 9 | 27 | 30 | 9 | ||
1 | 10 | 35 | 50 | 25 | 2 |
Exact Solution | Approximate Solution | Absolute Error | |
---|---|---|---|
0 | 0 | 0 | |
1 |
Abs. Error for Case I, M = 2 | Error for Case II, M = 2 | |
---|---|---|
Abs. Error for M = 2 | |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdy, A.M.S.; Nagdy, A.S.; Hashem, K.M.; Mohamed, D.S. A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations. Fractal Fract. 2023, 7, 196. https://doi.org/10.3390/fractalfract7020196
Mahdy AMS, Nagdy AS, Hashem KM, Mohamed DS. A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations. Fractal and Fractional. 2023; 7(2):196. https://doi.org/10.3390/fractalfract7020196
Chicago/Turabian StyleMahdy, Amr M. S., Abbas S. Nagdy, Khaled M. Hashem, and Doaa Sh. Mohamed. 2023. "A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations" Fractal and Fractional 7, no. 2: 196. https://doi.org/10.3390/fractalfract7020196
APA StyleMahdy, A. M. S., Nagdy, A. S., Hashem, K. M., & Mohamed, D. S. (2023). A Computational Technique for Solving Three-Dimensional Mixed Volterra–Fredholm Integral Equations. Fractal and Fractional, 7(2), 196. https://doi.org/10.3390/fractalfract7020196