On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Some Illustrative Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonchev, D. Chemical Graph Theory: Introduction and Fundamentals. Chemical Graph Theory; Taylor & Francis: Abingdon, UK, 1991; Available online: https://books.google.de/books?id=X0AG7HhiccoC (accessed on 11 October 2022).
- Cardwell, D.S.L. John Dalton and the progress of science. Phys. Today 1970, 23, 77. [Google Scholar] [CrossRef]
- Dalton, J. A New System of Chemical Philosophy; Cambridge Library Collection—Physical Sciences; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Hein, G.E. Kekulé and the Architecture of Molecules. Adv. Chem. 1966, 61, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Butlerov, A. Ueber Die Verwandtschaft Der Mehraffinen Atome. Z. Für Chem. 1862, 5, 297–304. [Google Scholar]
- Higgins, W. A Comparative View of the Phlogistic and Antiphlogistic Theories, 2nd ed.; Gale ECCO: Farmington Hills, MI, USA, 1791. [Google Scholar]
- Couper, A.S. Sur Une Nouvelle Théorie Chimique. Ann. Chim. Phys. 1858, 53, 488–489. [Google Scholar]
- Cayley, A. On the Theory of the Analytical Forms Called Trees. Mag. J. Sci. 1857, 13, 172–176. [Google Scholar] [CrossRef]
- Sylvester, J.J. On an Application of the New Atomic Theory to the Graphical Representation of the Invariants and Covariants of Binary Quantics with Three Appendices. Am. J. Math. 1878, 1, 64. [Google Scholar] [CrossRef]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic: Cambridge, UK, 2009. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equation; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Sabatier, J.; Agarwal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Agarwal, R.P.; Lakshmikantham, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theor. 2010, 72, 2859–2862. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific: London, UK, 2012. [Google Scholar]
- Qiu, T.; Bai, Z. Existence of positive solution for singular fractional equations. Electr. J. Differ. Equ. 2008, 146, 1–9. [Google Scholar]
- Zhang, S. Existence of positive solutions for some class of nonlinear fractional equation. J. Math. Anal. Appl. 2003, 278, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Hashim, I.; Abdulaziz, O.; Momani, S. Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. 2009, 14, 674–684. [Google Scholar] [CrossRef]
- Mdallal, M.A.; Syam, M.I.; Anwar, M.N. A collocation-shooting method for solving fractional boundary value problems. Commun. Nonlinear Sci. 2010, 15, 3814–3822. [Google Scholar] [CrossRef]
- Zhang, S. The existence of a positive solution for nonlinear fractional differential equation. J. Math. Anal. Appl. 2000, 252, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Lumer, G. Connecting of local operators and evolution equations on a network. Lect. Notes Math. 1985, 787, 219–234. [Google Scholar]
- Zavgorodnii, M.G.; Pokornyi, Y.V. On the spectrum of second-order boundary value problems on spatial networks. Usp. Mat. Nauk. 1989, 44, 220–221. [Google Scholar]
- Gordeziani, D.G.; Kupreishvli, M.; Meladze, H.V.; Davitashvili, T.D. On the solution of boundary value problem for differential equations given in graphs. Appl. Math. Lett. 2008, 13, 80–91. [Google Scholar]
- Mehandiratta, V.; Mehra, M.; Leugering, G. Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph. J. Math. Anal. Appl. 2019, 477, 1243–1264. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.J.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Nicaise, S. Some results on spectral theory over networks applied to nerve impulses transmission. Lect. Notes Math. 1985, 1171, 532–541. [Google Scholar]
- Etemad, S.; Rezapour, S. On the existence of solutions for fractional boundary value problems on the ethane graph. Adv. Differ. Equ. 2020, 276, 2020. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Comm. Nonlinear Sci. Num. Simul. 2021, 100, 105844. [Google Scholar] [CrossRef]
- Rezapour, S.; Deressa, C.T.; Hussain, A.; Etemad, S.; George, R.; Ahmad, B. A theoretical analysis of a fractional multi-dimensional system of boundary value problems on the methylpropane graph via fixed point technique. Mathematics 2022, 10, 568. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W. The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph. Alex. Eng. J. 2021, 60, 5365–5374. [Google Scholar] [CrossRef]
- Turab, A.; Mitrovic, Z.D.; Savic, A. Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph. Adv. Differ. Equ. 2021, 494, 2021. [Google Scholar] [CrossRef]
- Ali, W.; Turab, A.; Nieto, J.J. On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph. J. Inequal Appl. 2022, 5, 2022. [Google Scholar] [CrossRef]
- Turab, A.; Rosli, N. Study of fractional differential equations emerging in the theory of chemical graphs: A robust approach. Mathematics 2022, 10, 4222. [Google Scholar] [CrossRef]
- Shah, K.; Khan, R.A. Existence and uniqueness results to a coupled system of factional order boundary value problems by topological degree theory. Numer. Funct. Anal. Optim. 2016, 37, 887–899. [Google Scholar] [CrossRef]
- Shah, K.; Ali, A.; Khan, R.A. Degree theory and existence of positive solutions to coupled systems of multipoint boundary value problems. Bound Value Probl. 2016, 43. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shah, K.; Ali, A. Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations. Math. Meth. Appl. Sci. 2018, 41, 2392–2402. [Google Scholar] [CrossRef]
- Turab, A.; Sintunavarat, W. A unique solution of the iterative boundary value problem for a second-order differential equation approached by fixed point results. Alex. Eng. J. 2021, 60, 5797–5802. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory. PLoS ONE 2022, 17, 2022. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators. Alex. Eng. J. 2020, 59, 3019–3027. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound Value Probl. 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Thabet, S.T.; Etemad, S.; Rezapour, S. On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 2021, 45, 496–519. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68. [Google Scholar] [CrossRef]
- Alizadeh, S.; Baleanu, D.; Rezapour, S. Analyzing transient response of the parallel RCL circuit by using the Caputo–Fabrizio fractional derivative. Adv. Differ. Equ. 2020, 55. [Google Scholar] [CrossRef]
- Baleanu, D.; Rezapour, S.; Saberpour, Z. On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound Value Probl. 2019, 79. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Pourrazi, S.; Rezapour, S. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv. Differ. Equ. 2019, 473. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 1–13. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Math. Comput. Simul. 2022, 198, 65–84. [Google Scholar] [CrossRef] [PubMed]
- Aydogan, M.S.; Baleanu, D.; Mousalou, A.; Rezapour, S. On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound Value Probl. 2018, 90. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammadi, H.; Rezapour, S. Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics nr. 2004; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turab, A.; Sintunavarat, W.; Ro, J.-S. On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal Fract. 2023, 7, 99. https://doi.org/10.3390/fractalfract7020099
Turab A, Sintunavarat W, Ro J-S. On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal and Fractional. 2023; 7(2):99. https://doi.org/10.3390/fractalfract7020099
Chicago/Turabian StyleTurab, Ali, Wutiphol Sintunavarat, and Jong-Suk Ro. 2023. "On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT" Fractal and Fractional 7, no. 2: 99. https://doi.org/10.3390/fractalfract7020099
APA StyleTurab, A., Sintunavarat, W., & Ro, J. -S. (2023). On Novel Mathematical Modeling for Studying a Class of Nonlinear Caputo-Type Fractional-Order Boundary Value Problems Emerging in CGT. Fractal and Fractional, 7(2), 99. https://doi.org/10.3390/fractalfract7020099