A Multi-Spectral Fractal Image Model and Its Associated Fractal Dimension Estimator
Abstract
:1. Introduction
2. Proposed Approach
2.1. Theoretical Considerations
2.2. Fractal Model Extension to the Multi-Spectral Domain
2.3. Visualization of the Multi-Spectral Images
2.4. Mathematical Proof
2.5. Fractal Dimension Estimation for Multi-Spectral Images
3. Fine-Tuning the Estimator
4. Experimental Results
5. Conclusions
6. Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B. The Fractal Geometry of Nature; W.H. Freeman and Co.: New-York, NY, USA, 1982. [Google Scholar]
- Peitgen, H.; Saupe, D. The Sciences of Fractal Images; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Ivanovici, M.; Richard, N. Fractal Dimension of Color Fractal Images. IEEE Trans. Image Process. 2011, 20, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Ivanovici, M. A Fractal Dimension Estimator For Multispectral Images. In Proceedings of the 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Rome, Italy, 13–16 September 2022; pp. 1–4. [Google Scholar]
- Chen, W.; Yuan, S.; Hsiao, H.; Hsieh, C. Algorithms to estimating fractal dimension of textured images. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) 2001, 3, 1541–1544. [Google Scholar]
- Lee, W.; Chen, Y.; Hsieh, K. Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform. IEEE Trans. Med. Imaging 2003, 22, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Ivanovici, M.; Richard, N.; Paulus, D. Color Image Segmentation. In Advanced Color Image Processing and Analysis; Fernandez-Maloigne, C., Ed.; Springer: New York, NY, USA, 2013; Chapter 8; pp. 219–277. [Google Scholar]
- Wang, W.; Wang, W.; Hu, Z. Retinal vessel segmentation approach based on corrected morphological transformation and fractal dimension. IET Image Process. 2019, 13, 2538–2547. [Google Scholar] [CrossRef]
- Shahrezaei, I.; Kim, H. Fractal Analysis and Texture Classification of High-Frequency Multiplicative Noise in SAR Sea-Ice Images Based on a Transform- Domain Image Decomposition Method. IEEE Access 2020, 8, 40198–40223. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Qin, Q.; Zhao, B.; Ma, Y.; Liu, M.; Jiang, T. Scaling Correction of Remotely Sensed Leaf Area Index for Farmland Landscape Pattern With Multitype Spatial Heterogeneities Using Fractal Dimension and Contextural Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1472–1481. [Google Scholar] [CrossRef]
- Hausdorff, F. Dimension und äußeres Maß. Math. Ann. 1918, 79, 157–179. [Google Scholar] [CrossRef]
- Voss, R. Random Fractals: Characterization and measurement. Scaling Phenom. Disord. Syst. 1986, 10, 51–61. [Google Scholar] [CrossRef]
- Keller, J.; Chen, S. Texture Description and segmentation through Fractal Geometry. Comput. Vis. Graph. Image Process. 1989, 45, 150–166. [Google Scholar] [CrossRef]
- Falconer, K. Fractal Geometry, Mathematical Foundations and Applications; John Wiley and Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Maragos, P.; Sun, F. Measuring the fractal dimension of signals: Morphological covers and iterative optimization. IEEE Trans. Signal Process. 1993, 41, 108–121. [Google Scholar] [CrossRef]
- Allain, C.; Cloitre, M. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef]
- Castillo, O.; Melin, P. A New Method for Fuzzy Estimation of the Fractal Dimension and its Applications to Time Series Analysis and Pattern Recognition. In Proceedings of the Fuzzy Information Processing Society, 2000, NAFIPS, 19th International Conference of the North American, Atlanta, GA, USA, 13–15 July 2000; pp. 451–455. [Google Scholar]
- Pedrycz, W.; Bargiela, A. Fuzzy fractal dimensions and fuzzy modeling. Inf. Sci. 2003, 153, 199–216. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Bulletti, A.; Garzelli, A. Robust Estimation of Image Fractal Dimension based on Pyramidal Decomposition. In Proceedings of the 6th IEEE International Conference on Electronic, Circuits ans Systems, Paphos, Cyprus, 5–8 September 1999; Volume 1, pp. 553–556. [Google Scholar]
- Jansson, S. Evaluation of Methods for Estimating Fractal Properties of Intensity Images. Ph.D. Thesis, Umea University, Umea, Sweden, 2006. [Google Scholar]
- Sun, W.; Xu, G.; Gong, P.; Liang, S. Fractal analysis of remotely sensed images: A review of methods and applications. Int. J. Remote Sens. 2006, 27, 4963–4990. [Google Scholar] [CrossRef]
- Kinsner, W. A unified approach to fractal dimensions. In Proceedings of the 4th IEEE International Conference on Cognitive Informatics, Irvine, CA, USA, 8–10 August 2005; pp. 58–72. [Google Scholar]
- Manousaki, A.; Manios, A.; Tsompanaki, E.; Tosca, A. Use of color texture in determining the nature of melanocytic skin lesions—A qualitative and quantitative approach. Comput. Biol. Med. 2006, 36, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Ivanovici, M.; Richard, N. Entropy versus fractal complexity for computer-generated color fractal images. In Proceedings of the 4th CIE Expert Symposium on Colour and Visual Appearance, Prague, Czech Republic, 6–7 September 2016. [Google Scholar]
- Zhao, X.; Wang, X. An Approach to Compute Fractal Dimension of Color Images. Fractals 2017, 25, 1750007. [Google Scholar] [CrossRef]
- Nayak, S.; Mishra, J.; Palai, G. An extended DBC approach by using maximum Euclidian distance for fractal dimension of color images. Optik 2018, 166, 110–115. [Google Scholar] [CrossRef]
- Ivanovici, M. Fractal Dimension of Color Fractal Images With Correlated Color Components. IEEE Trans. Image Process. 2020, 29, 8069–8082. [Google Scholar] [CrossRef]
- Kang, X.; Duan, P.; Li, S. Hyperspectral image visualization with edge-preserving filtering and principal component analysis. Inf. Fusion 2020, 57, 130–143. [Google Scholar] [CrossRef]
- Teke, M.; Deveci, H.S.; Haliloğlu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013; pp. 171–176. [Google Scholar]
- Reshma, S.; Veni, S. Comparative analysis of classification techniques for crop classification using airborne hyperspectral data. In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2017; pp. 2272–2276. [Google Scholar]
- Piiroinen, R.; Heiskanen, J.; Maeda, E.; Viinikka, A.; Pellikka, P. Classification of tree species in a diverse African agroforestry landscape using imaging spectroscopy and laser scanning. Remote Sens. 2017, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Fricker, G.A.; Ventura, J.D.; Wolf, J.A.; North, M.P.; Davis, F.W.; Franklin, J. A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [Google Scholar] [CrossRef] [Green Version]
- Dumke, I.; Nornes, S.M.; Purser, A.; Marcon, Y.; Ludvigsen, M.; Ellefmo, S.L.; Johnsen, G.; Søreide, F. First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules. Remote Sens. Environ. 2018, 209, 19–30. [Google Scholar] [CrossRef]
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Liao, D.; Chen, S.; Qian, Y. Visualization of Hyperspectral Images Using Moving Least Squares. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 2851–2856. [Google Scholar]
- Coliban, R.M.; Marincaş, M.; Hatfaludi, C.; Ivanovici, M. Linear and Non-Linear Models for Remotely-Sensed Hyperspectral Image Visualization. Remote Sens. 2020, 12, 2479. [Google Scholar] [CrossRef]
- Process and Analyze All Types of Imagery and Data. Available online: https://www.harrisgeospatial.com/Software-Technology/ENVI/ (accessed on 21 January 2023).
- Demir, B.; Celebi, A.; Erturk, S. A low-complexity approach for the color display of hyperspectral remote-sensing images using one-bit-transform-based band selection. IEEE Trans. Geosci. Remote Sens. 2008, 47, 97–105. [Google Scholar] [CrossRef]
- Le Moan, S.; Mansouri, A.; Voisin, Y.; Hardeberg, J.Y. A constrained band selection method based on information measures for spectral image color visualization. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5104–5115. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Du, Q.; Du, P. Hyperspectral imagery visualization using band selection. In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Shanghai, China, 4–7 June 2012; pp. 1–4. [Google Scholar]
- Tyo, J.S.; Konsolakis, A.; Diersen, D.I.; Olsen, R.C. Principal-components-based display strategy for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Razdan, A.; Hu, J.; Wonka, P. Interactive hyperspectral image visualization using convex optimization. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1673–1684. [Google Scholar]
- Khan, H.A.; Khan, M.M.; Khurshid, K.; Chanussot, J. Saliency based visualization of hyper-spectral images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1096–1099. [Google Scholar]
- Fang, J.; Qian, Y. Local detail enhanced hyperspectral image visualization. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1092–1095. [Google Scholar]
- Kang, X.; Duan, P.; Li, S.; Benediktsson, J.A. Decolorization-based hyperspectral image visualization. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4346–4360. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, X. Hyperspectral image visualization using t-distributed stochastic neighbor embedding. In Proceedings of the MIPPR 2015: Remote Sensing Image Processing, Geographic Information Systems, and Other Applications, Enshi, China, 31 October–1 November 2015; Liu, J., Sun, H., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2015; Volume 9815, pp. 14–21. [Google Scholar]
- Ertürk, S.; Süer, S.; Koç, H. A high-dynamic-range-based approach for the display of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2001–2004. [Google Scholar] [CrossRef]
- Long, Y.; Li, H.C.; Celik, T.; Longbotham, N.; Emery, W.J. Pairwise-Distance-Analysis-Driven Dimensionality Reduction Model with Double Mappings for Hyperspectral Image Visualization. Remote Sens. 2015, 7, 7785–7808. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, N.P.; Gupta, M.R. Design goals and solutions for display of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2684–2692. [Google Scholar] [CrossRef]
- Jacobson, N.P.; Gupta, M.R.; Cole, J.B. Linear fusion of image sets for display. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3277–3288. [Google Scholar] [CrossRef]
- Liao, D.; Qian, Y.; Tang, Y.Y. Constrained manifold learning for hyperspectral imagery visualization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Jordan, J.; Angelopoulou, E. Hyperspectral image visualization with a 3-D self-organizing map. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar]
- Duan, P.; Kang, X.; Li, S.; Ghamisi, P. Multichannel pulse-coupled neural network-based hyperspectral image visualization. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2444–2456. [Google Scholar] [CrossRef]
- Duan, P.; Kang, X.; Li, S. Convolutional Neural Network for Natural Color Visualization of Hyperspectral Images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 3372–3375. [Google Scholar]
- Tang, R.; Liu, H.; Wei, J.; Tang, W. Supervised learning with convolutional neural networks for hyperspectral visualization. Remote Sens. Lett. 2020, 11, 363–372. [Google Scholar] [CrossRef]
400 nm | 450 nm | 500 nm | 550 nm | 600 nm | 650 nm | 700 nm |
7 | 2.2727 | 2.2727 | 2.2727 | 2.2727 | 2.2727 | 2.2727 | 2.2727 | |
11 | 2.4790 | 2.7653 | 2.7653 | 2.7653 | 2.7653 | 2.6934 | 2.6934 | |
21 | 2.5873 | 2.5578 | 2.5411 | 2.5308 | 2.5268 | 2.5268 | 2.5257 | |
31 | 2.5393 | 2.5134 | 2.5134 | 2.5134 | 2.5083 | 2.5083 | 2.4816 | |
41 | 2.5233 | 2.5065 | 2.5013 | 2.4965 | 2.4755 | 2.4755 | 2.4733 | |
51 | 2.5014 | 2.4893 | 2.4839 | 2.4604 | 2.4574 | 2.4394 | 2.4394 | |
61 | 2.4903 | 2.4786 | 2.4533 | 2.4471 | 2.4443 | 2.4164 | 2.4080 | |
71 | 2.4702 | 2.4625 | 2.4468 | 2.4439 | 2.4414 | 2.4320 | 2.4214 | |
81 | 2.4693 | 2.4613 | 2.4539 | 2.4473 | 2.4302 | 2.4269 | 2.4269 | |
91 | 2.4773 | 2.4606 | 2.4469 | 2.4391 | 2.4321 | 2.3607 | 2.3651 | |
101 | 2.4695 | 2.4397 | 2.4165 | 2.3596 | 2.3587 | 2.3587 | 2.3579 |
21 | 3.5975 | 3.8173 | 3.8173 | 3.9665 | 3.9665 | 3.9665 | 3.9665 | |
31 | 4.1713 | 4.1713 | 4.2113 | 4.2113 | 4.2229 | 4.2229 | 4.2229 | |
41 | 4.1952 | 4.2133 | 4.2133 | 4.2133 | 4.1150 | 4.1150 | 4.1150 | |
51 | 4.1619 | 4.1619 | 4.1334 | 4.1157 | 3.9118 | 3.9118 | 3.9118 | |
61 | 4.1040 | 4.1175 | 4.0941 | 3.9299 | 3.9299 | 3.6920 | 3.6920 | |
71 | 4.0611 | 4.0737 | 4.0531 | 4.0342 | 3.5104 | 3.5104 | 3.5104 | |
81 | 4.0154 | 4.0333 | 3.9957 | 3.9744 | 3.3457 | 3.3457 | 3.3287 | |
91 | 3.9682 | 3.9682 | 3.9462 | 3.2035 | 3.1677 | 3.1677 | 3.1523 | |
101 | 3.8944 | 3.9172 | 3.8935 | 3.0930 | 3.0742 | 3.0652 | 3.0572 |
41 | 0.7523 | 1.1958 | 4.5693 | 5.1281 | 5.1281 | 5.1281 | 5.1281 | |
51 | 5.4481 | 5.8568 | 5.9662 | 5.9662 | 5.9662 | 5.9662 | 5.9662 | |
61 | 5.7691 | 6.0965 | 6.4867 | 6.4867 | 6.4867 | 6.4867 | 6.4867 | |
71 | 6.1941 | 6.5484 | 6.6172 | 6.6555 | 6.6555 | 6.6555 | 6.6555 | |
81 | 6.5319 | 6.5319 | 6.5089 | 6.3486 | 6.3486 | 6.1297 | 6.1297 | |
91 | 6.4054 | 6.4419 | 6.4574 | 6.4574 | 6.6636 | 6.6636 | 6.6636 | |
101 | 6.3180 | 5.7551 | 5.2170 | 5.2170 | 5.0599 | 5.0599 | 5.0599 |
31 | 3.2891 | 3.3425 | 3.4251 | 3.4876 | 3.5405 | |
41 | 3.4330 | 3.5144 | 3.4140 | 3.4140 | 3.4140 | |
51 | 3.4891 | 3.5072 | 3.5072 | 3.2730 | 3.2730 | |
61 | 3.3639 | 3.3863 | 3.3595 | 3.3595 | 3.0681 | |
71 | 3.2634 | 3.2879 | 3.2879 | 2.4161 | 2.4161 |
11 | 0.9443 | 1.4164 | 1.4164 | 1.4164 | 1.7307 | |
21 | 2.7358 | 2.9679 | 2.9679 | 3.0386 | 3.0386 | |
31 | 3.0320 | 3.0320 | 3.0456 | 3.0456 | 2.9699 | |
41 | 2.9221 | 2.9221 | 2.7059 | 2.6599 | 2.6599 | |
51 | 2.8264 | 2.8264 | 2.8324 | 2.5104 | 2.5464 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanovici, M. A Multi-Spectral Fractal Image Model and Its Associated Fractal Dimension Estimator. Fractal Fract. 2023, 7, 238. https://doi.org/10.3390/fractalfract7030238
Ivanovici M. A Multi-Spectral Fractal Image Model and Its Associated Fractal Dimension Estimator. Fractal and Fractional. 2023; 7(3):238. https://doi.org/10.3390/fractalfract7030238
Chicago/Turabian StyleIvanovici, Mihai. 2023. "A Multi-Spectral Fractal Image Model and Its Associated Fractal Dimension Estimator" Fractal and Fractional 7, no. 3: 238. https://doi.org/10.3390/fractalfract7030238
APA StyleIvanovici, M. (2023). A Multi-Spectral Fractal Image Model and Its Associated Fractal Dimension Estimator. Fractal and Fractional, 7(3), 238. https://doi.org/10.3390/fractalfract7030238