In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives
Abstract
:1. Introduction
2. Formulation of HIV Dynamics
3. Fundamentals of Fractional Calculus
4. Fractional Dynamics of HIV Infection
4.1. HIV Dynamics via the Liouville–Caputo Operator
4.2. HIV Dynamics via the ABC Operator
5. Numerical Discussions
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mbogo, W.R.; Luboobi, L.S.; Odhiambo, J.W. Stochastic Model for In-Host HIV Dynamics with Therapeutic Intervention. Int. Sch. Res. Not. 2013, 2013, 103708. [Google Scholar]
- United Nations International Children’s Emergency Fund, Joint United Nations Programme on HIV and AIDS and World Health Organization (2011) Global HIV/ AIDS Response: Epidemic Update and Health Sector Progress towards Universal Access: Progress Report 2011; World Health Organization: Geneva, Switzerland, 2011.
- World Health Organization. World Health Statistics 2010; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Jones, E.; Roemer, P.; Raghupathi, M.; Pankavich, S. Analysis and Simulation of the Three-Component Model of HIV Dynamics. SIAM Undergrad. Res. Online 2013, 7, 89–106. [Google Scholar] [CrossRef]
- Adams, B.; Banks, H.; Davidian, M.; Kwon, H.D.; Tran, H.; Wynne, S.; Rosenberg, E. HIV Dynamics: Modeling, Data Analysis, and Optimal Treatment Protocols. J. Comput. Appl. Math. 2015, 184, 10–49. [Google Scholar] [CrossRef]
- Alizon, S.; Magnus, C. Modelling the Course of an HIV Infection: Insights from Ecology and Evolution. Viruses 2012, 4, 1984–2013. [Google Scholar] [CrossRef]
- Arruda, E.F.; Dias, C.M.; De Magalhaes, C.V.; Pastore, D.H.; Thomé, R.C.; Yang, H.M. An Optimal Control Approach to HIV Immunology. Appl. Math. 2015, 6, 1115–1130. [Google Scholar] [CrossRef]
- Chandra, P. Mathematical Modeling of HIV Dynamics: In Vivo. Indian Math. Soc. Math.—Stud. India 2009, 78, 7–27. [Google Scholar]
- Rivadeneira, P.S.; Moog, C.H.; Stan, G.B.; Costanza, V.; Brunet, C.; Raffi, F.; Ferrfé, V.; Mhawej, M.J.; Biafore, F.; Ouattara, D.A. Mathematical Modeling of HIV Dynamics after Antiretroviral Therapy Initiation: A Clinical Research Study. AIDS Res. Hum. Retroviruses 2014, 30, 831–834. [Google Scholar] [CrossRef]
- Wodarz, D.; Nowak, M.A. Mathematical Models of HIV Pathogenesis and Treatment. BioEssays 2002, 24, 1178–1187. [Google Scholar] [CrossRef]
- Chen, S.B.; Rajaee, F.; Yousefpour, A.; Alcaraz, R.; Chu, Y.M.; Gómez-Aguilar, J.F.; Bekiros, S.; Aly, A.A.; Jahanshahi, H. Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alex. Eng. J. 2021, 60, 1545–1555. [Google Scholar] [CrossRef]
- Gul, N.; Bilal, R.; Algehyne, E.A.; Alshehri, M.G.; Khan, M.A.; Chu, Y.M.; Islam, S. The dynamics of fractional order Hepatitis B virus model with asymptomatic carriers. Alex. Eng. J. 2021, 60, 3945–3955. [Google Scholar] [CrossRef]
- Chu, Y.M.; Ali, A.; Khan, M.A.; Islam, S.; Ullah, S. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Results Phys. 2021, 21, 103787. [Google Scholar] [CrossRef]
- Duffin, R.P.; Tullis, R.H. Mathematical Models of the Complete Course of HIV Infection and AIDS. Comput. Math. Meth. Med. 2002, 4, 215–221. [Google Scholar] [CrossRef]
- Apenteng, O.O.; Osei, P.P.; Ismail, N.A.; Chiabai, A. Analysing the impact of migration on HIV/AIDS cases using epidemiological modelling to guide policy makers. Infect. Dis. Model. 2022, 7, 252–261. [Google Scholar] [CrossRef]
- Mallick, U.K.; Rahman, A.; Biswas, M.H.A.; Samsuzzoha, M.; Roy, S.K. An Optimal Immunotherapeutic Treatment of HIV Infections to Regain the Targeted CD4+ T Cell Count: A Boundary Value Problem Approach. J. Appl. Nonlinear Dyn. 2023, 12, 39–51. [Google Scholar] [CrossRef]
- Gandhi, R.T.; Bedimo, R.; Hoy, J.F.; Landovitz, R.J.; Smith, D.M.; Eaton, E.F.; Lehmann, C.; Springer, S.A.; Sax, P.E.; Thompson, M.A.; et al. Antiretroviral Drugs for Treatment and Prevention of HIV Infection in Adults: 2022 Recommendations of the International Antiviral Society–USA Panel. JAMA 2023, 329, 63–84. [Google Scholar] [CrossRef]
- Culshaw, R.V.; Ruan, S.; Spiteri, R.J. Optimal HIV Treatment by Maximising Immune Response. J. Math. Biol. 2004, 48, 545–562. [Google Scholar] [CrossRef]
- Zhou, X.; Song, X.; Shi, X. A differential equation model of HIV infection of CD4+ T-cells with cure rate. J. Math. Anal. 2008, 342, 1342–1355. [Google Scholar] [CrossRef]
- Mobisa, B.; Lawi, G.O.; Nthiiri, J.K. Modelling In Vivo HIV dynamics under combined antiretroviral treatment. J. Appl. Math. 2018, 2018, 8276317. [Google Scholar] [CrossRef]
- Arshad, S.; Baleanu, D.; Bu, W.; Tang, Y. Effects of HIV infection on CD4+ T-cell population based on a fractional-order model. Adv. Differ. Equ. 2017, 2017, 92. [Google Scholar] [CrossRef]
- Vazquez-Leal, H.; Hernandez-Martinez, L.; Khan, Y.; Jimenez-Fernandez, V.M.; Filobello-Nino, U.; Diaz-Sanchez, A.; Herrera-May, A.L.; Castaneda-Sheissa, R.; Marin-Hernandez, A.; Rabago-Bernal, F.; et al. Multistage HPM applied to path tracking damped oscillations of a model for HIV infection of CD4+ T cells. Br. J. Math. Stat. Psychol. 2014, 4, 1035–1047. [Google Scholar] [CrossRef]
- Perelson, A.S.; Nelson, P.W. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999, 41, 3–44. [Google Scholar] [CrossRef]
- Perelson, A.S. Modeling the interaction of the immune system with HIV. In Mathematical and Statistical Approaches to AIDS Epidemiology; Lecture Notes in Biomathematics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 83. [Google Scholar]
- Pinto, C.M.A.; Carvalho, A.R.M.; Baleanu, D.; Srivastava, H.M. Efficacy of the post-exposure prophylaxis and of the HIV latent reservoir in HIV infection. Mathematics 2019, 7, 515. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. J. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jan, A.; Srivastava, H.M.; Khan, A.; Mohammed, P.O.; Jan, R.; Hamed, Y.S. In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives. Fractal Fract. 2023, 7, 361. https://doi.org/10.3390/fractalfract7050361
Jan A, Srivastava HM, Khan A, Mohammed PO, Jan R, Hamed YS. In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives. Fractal and Fractional. 2023; 7(5):361. https://doi.org/10.3390/fractalfract7050361
Chicago/Turabian StyleJan, Asif, Hari Mohan Srivastava, Amin Khan, Pshtiwan Othman Mohammed, Rashid Jan, and Y. S. Hamed. 2023. "In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives" Fractal and Fractional 7, no. 5: 361. https://doi.org/10.3390/fractalfract7050361
APA StyleJan, A., Srivastava, H. M., Khan, A., Mohammed, P. O., Jan, R., & Hamed, Y. S. (2023). In Vivo HIV Dynamics, Modeling the Interaction of HIV and Immune System via Non-Integer Derivatives. Fractal and Fractional, 7(5), 361. https://doi.org/10.3390/fractalfract7050361