Stabilization of a Non-linear Fractional Problem by a Non-Integer Frictional Damping and a Viscoelastic Term
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness
4. The Case and
5. A Useful Functional
6. The Case and
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atanackovic, T.M.; Pilipovic, S.; Zorica, D. A diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 2007, 40, 5319–5333. [Google Scholar] [CrossRef]
- Chen, J.; Liu, F.; Anh, V. Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 2008, 338, 1364–1377. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Orsingher, E.; Beghin, L. Time-fractional telegraph equation and telegraph processes with Brownian time. Probab. Theory Relat. Fields 2004, 128, 141–160. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
- Sandev, T.; Tomovski, Z. The general time fractional wave equation for a vibrating string. J. Phys. A Math. Theor. 2010, 43, 055204. [Google Scholar] [CrossRef]
- Schneider, W.R.; Wess, W. Fractional diffusion and wave equations. J. Math. Phys. 2006, 213, 205–213. [Google Scholar] [CrossRef]
- Shen, F.; Tan, W.; Zhao, Y.; Masuoka, T. The Raleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 2006, 7, 1072–1080. [Google Scholar] [CrossRef]
- Barthelemy, P.; Bertolotti, J.; Wiersma, D.S. A Lévy flight for light. Nature 2008, 453, 495–498. [Google Scholar] [CrossRef]
- Goychuk, I.; Kharchenko, V.; Metzler, R. Molecular motors pulling cargos in the viscoelastic cytosol: How power strokes beat subdiffusion. Phys. Chem. Chem. Phys. 2014, 16, 16524–16535. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Lunardi, A. On the linear heat equation with fading memory. SIAM J. Math. Anal. 1990, 21, 1213–1224. [Google Scholar] [CrossRef]
- Fabrizio, M.; Morro, A. Mathematical Problems in Linear Viscoelasticity; Studies in Applied and Numerical Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Giorgi, C.; Pata, V. Asymptotic behavior of a nonlinear hyperbolic heat equation with memory. NoDEA Nonlinear Differ. Equ. Appl. 2001, 8, 157–171. [Google Scholar] [CrossRef]
- Munteanu, I. Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks. J. Diff. Equ. 2015, 259, 454–472. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Domingos Cavalcanti, V.N.; Prates Filho, J.S.; Soriano, J.A. Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping. Diff. Integral Equ. 2001, 14, 85–116. [Google Scholar]
- Pata, V. Exponential stability in linear viscoelasticity. Quart. Appl. Math. 2006, LXIV, 499–513. [Google Scholar] [CrossRef]
- Tatar, N.-e. Polynomial stability without polynomial decay of the relaxation function. Math. Meth. Appl. Sci. 2008, 31, 1874–1886. [Google Scholar] [CrossRef]
- Tatar, N.-e. On a large class of kernels yielding exponential stability in viscoelasticity. Appl. Math. Comp. 2009, 215, 2298–2306. [Google Scholar] [CrossRef]
- Tatar, N.-e. Arbitrary decays in viscoelasticity. J. Math. Physics 2011, 52, 013502. [Google Scholar] [CrossRef]
- Tatar, N.-e. A new class of kernels leading to an arbitrary decay in viscoelasticity. Mediterr. J. Math. 2013, 10, 213–226. [Google Scholar] [CrossRef]
- Tatar, N.-e. Nonexistence results for a fractional problem arising in thermal diffusion in fractal media. Chaos Solit. Fractals 2008, 36, 1205–1214. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Herzallah, M.A.E. Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-Differential equation. Appl. Anal. 2005, 84, 1–14. [Google Scholar] [CrossRef]
- Ponce, R. Bounded mild solutions to fractional integro-differential equations in Banach spaces. Semigroup Forum 2013, 87, 377–392. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Dos Santos, J.P.C.; Cuevas, C. Analytic resolvent operator and existence results for fractional integrodifferential equations. J. Abst. Diff. Eqs. Appl. 2012, 2, 26–47. [Google Scholar]
- Andrade, B.D.; Dos Santos, J.P.C. Existence of solutions for a fractional neutral integro-differential equation with unbounded delay. Electron. J. Diff. Eqs. 2012, 90, 1–13. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.Y. Mittag–Leffler Functions, Related Topics and Applications; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germeny, 2014. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Yan, L.; Chen, Y.Q.; Podlubny, I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar]
- Alikhanov, A.A. Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 2012, 219, 3938–3946. [Google Scholar] [CrossRef]
- Dai, H.; Chen, W. New power law inequalities for fractional derivative and stability analysis of fractional order systems. Nonlinear Dyn. 2017, 87, 1531–1542. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Wang, H. Mittag–Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal. Hybrid Syst. 2015, 16, 104–121. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. Int. J. Appl. Math. 2001, 34, 1–41. [Google Scholar] [CrossRef]
- Shkalikov, A.A. Perturbations of self-adjoint and normal operators with discrete spectrum. Russ. Math. Surveys 2016, 71, 907–964. [Google Scholar] [CrossRef]
- Dos Santos, J.P.C. Fractional resolvent operator with α∈(0,1) and applications. Frac. Diff. Calc. 2019, 9, 187–208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Homidan, B.; Tatar, N.-e. Stabilization of a Non-linear Fractional Problem by a Non-Integer Frictional Damping and a Viscoelastic Term. Fractal Fract. 2023, 7, 367. https://doi.org/10.3390/fractalfract7050367
Al-Homidan B, Tatar N-e. Stabilization of a Non-linear Fractional Problem by a Non-Integer Frictional Damping and a Viscoelastic Term. Fractal and Fractional. 2023; 7(5):367. https://doi.org/10.3390/fractalfract7050367
Chicago/Turabian StyleAl-Homidan, Banan, and Nasser-eddine Tatar. 2023. "Stabilization of a Non-linear Fractional Problem by a Non-Integer Frictional Damping and a Viscoelastic Term" Fractal and Fractional 7, no. 5: 367. https://doi.org/10.3390/fractalfract7050367
APA StyleAl-Homidan, B., & Tatar, N. -e. (2023). Stabilization of a Non-linear Fractional Problem by a Non-Integer Frictional Damping and a Viscoelastic Term. Fractal and Fractional, 7(5), 367. https://doi.org/10.3390/fractalfract7050367