Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”
1. Introduction
2. An Overview of the Special Issue
- Operators of fractional integrals and fractional derivatives and their applications;
- Chaos and dynamical systems based upon fractional calculus;
- Fractional-order ODEs and PDEs;
- Fractional-order differintegral and integro-differential equations;
- Integrals and derivatives of fractional order associated with special functions of mathematical physics and applied mathematics;
- Special functions of mathematical physics and applied mathematics;
- Identities and inequalities involving fractional-order integrals and fractional-order derivatives.
3. Contributors and Contributions to the Special Issue
Funding
Acknowledgments
Conflicts of Interest
References
- Alabedalhadi, M.; Al-Smadi, M.; Al-Omari, S.; Karaca, Y.; Momani, S. New Bright and Kink Soliton Solutions for Fractional Complex Ginzburg-Landau Equation with Non-Local Nonlinearity Term. Fractal Fract. 2022, 6, 724. [Google Scholar] [CrossRef]
- Momenzadeh, M.; Obi, O.A.; Hincal, E. A Bi-Geometric Fractional Model for the Treatment of Cancer Using Radiotherapy. Fractal Fract. 2022, 6, 287. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhao, Y. Uniform Stability of a Class of Fractional-Order Fuzzy Complex-Valued Neural Networks in Infinite Dimensions. Fractal Fract. 2022, 6, 281. [Google Scholar] [CrossRef]
- Xu, H.; Li, H.; Xuan, Z. Some New Inequalities on Laplace-Stieltjes Transforms Involving Logarithmic Growth. Fractal Fract. 2022, 6, 233. [Google Scholar] [CrossRef]
- Wang, B.; Wang, S.; Peng, Y.; Pi, Y.; Luo, Y. Design and High-Order Precision Numerical Implementation of Fractional-Order PI Controller for PMSM Speed System Based on FPGA. Fractal Fract. 2022, 6, 218. [Google Scholar] [CrossRef]
- Alqhtani, M.; Saad, K.M. Fractal–Fractional Michaelis–Menten Enzymatic Reaction Model via Different Kernels. Fractal Fract. 2022, 6, 13. [Google Scholar] [CrossRef]
- Hyder, A.-A.; Barakat, M.A.; Fathallah, A.; Cesarano, C. Further Integral Inequalities through Some Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 282. [Google Scholar] [CrossRef]
- Area, I.; Nieto, J.J. Fractional-Order Logistic Differential Equation with Mittag-Leffler-Type Kernel. Fractal Fract. 2021, 5, 273. [Google Scholar] [CrossRef]
- Moaaz, O.; Cesarano, C.; Askar, S. Asymptotic and Oscillatory Properties of Noncanonical Delay Differential Equations. Fractal Fract. 2021, 5, 259. [Google Scholar] [CrossRef]
- Torres-Hernandez, A.; Brambila-Paz, F. Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods. Fractal Fract. 2021, 5, 240. [Google Scholar] [CrossRef]
- Srivastava, H.M.; AbuJarad, E.S.A.; Jarad, F.; Srivastava, G.; AbuJarad, M.H.A. The Marichev-Saigo-Maeda Fractional-Calculus Operators Involving the (p, q)-Extended Bessel and Bessel-Wright Functions. Fractal Fract. 2021, 5, 210. [Google Scholar] [CrossRef]
- Mustafa, S.; Hajira; Khan, H.; Shah, R.; Masood, S. A Novel Analytical Approach for the Solution of Fractional-Order Diffusion-Wave Equations. Fractal Fract. 2021, 5, 206. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B.; Abdo, M.S.; Botmart, T.; Ahmad, H.; Almalahi, M.A.; Redhwan, S.S. (k,Ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities. Fractal Fract. 2021, 5, 172. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Li, C.; Srivastava, H.M. Uniqueness of Solutions of the Generalized Abel Integral Equations in Banach Spaces. Fractal Fract. 2021, 5, 105. [Google Scholar] [CrossRef]
- Li, C.; Beaudin, J. On the Nonlinear Integro-Differential Equations. Fractal Fract. 2021, 5, 82. [Google Scholar] [CrossRef]
- Sana, G.; Mohammed, P.O.; Shin, D.Y.; Noor, M.A.; Oudat, M.S. On Iterative Methods for Solving Nonlinear Equations in Quantum Calculus. Fractal Fract. 2021, 5, 60. [Google Scholar] [CrossRef]
- West, B.J. The Fractal Tapestry of Life: III Multifractals Entail the Fractional Calculus. Fractal Fract. 2022, 6, 225. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204. [Google Scholar]
- Srivastava, H.M. Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Srivastava, H.M. Some Parametric and Argument Variations of the Operators of Fractional Calculus and Related Special Functions and Integral Transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Srivastava, H.M. An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcendental Functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and Applied Mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
- Wright, E.M. The Asymptotic Expansion of Integral Functions Defined by Taylor Series. Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 1940, 238, 423–451. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M. Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”. Fractal Fract. 2023, 7, 415. https://doi.org/10.3390/fractalfract7050415
Srivastava HM. Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”. Fractal and Fractional. 2023; 7(5):415. https://doi.org/10.3390/fractalfract7050415
Chicago/Turabian StyleSrivastava, Hari Mohan. 2023. "Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”" Fractal and Fractional 7, no. 5: 415. https://doi.org/10.3390/fractalfract7050415
APA StyleSrivastava, H. M. (2023). Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”. Fractal and Fractional, 7(5), 415. https://doi.org/10.3390/fractalfract7050415