Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Asymptotic Synchronization for FONCDNUP
- (i)
- ,
- (ii)
- and
3.2. Pinning Synchronization for FOCDNUP
4. Numerical Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Huang, X.; Wang, Z.; Li, Y. Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function. Nonlinear Dyn. 2018, 93, 611–627. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Rihan, F.A.; Lakshmanan, S. Dissipativity analysis of complex-valued BAM neural networks with time delay. Neural Comput. Appl. 2019, 31, 127–137. [Google Scholar] [CrossRef]
- Song, Q.; Shu, H.; Zhao, Z.; Liu, Y.; Alsaadi Fuad, E. Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 2017, 244, 33–41. [Google Scholar] [CrossRef]
- Cao, J.; Guerrini, L.; Cheng, Z. Stability and hopf bifurcation of controlled complex networks model with two delays. Appl. Math. Comput. 2019, 343, 21–29. [Google Scholar] [CrossRef]
- Shukla, M.K.; Sharma, B.B. Secure communication and image encryption scheme based on synchronisation of fractional order chaotic systems using backstepping. Int. J. Simul. Process Model. 2018, 13, 473–485. [Google Scholar] [CrossRef]
- Padovan, J.; Guo, Y. General response of viscoelastic systems modelled by fractional operators. J. Frankl. Inst. 1988, 325, 247–275. [Google Scholar] [CrossRef]
- Majidabad, S.S.; Shandiz, H.T.; Hajizadeh, A. Nonlinear fractional-order power system stabilizer for multi-machine power systems based on sliding mode technique. Int. J. Robust Nonlinear Control 2015, 25, 1548–1568. [Google Scholar] [CrossRef]
- Lazarevi, M.P. Finite time stability analysis of PD alpha fractional control of robotic time-delay systems. Mech. Res. Commun. 2006, 33, 269–279. [Google Scholar] [CrossRef]
- Povstenko, Y.Z. Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses. Mech. Res. Commun. 2010, 37, 436–440. [Google Scholar] [CrossRef]
- Huang, J.; Shen, T. Well-posedness and dynamics of the stochastic fractional magneto-hydrodynamic equations. Nonlinear Anal.-Theory Methods Appl. 2016, 133, 102–133. [Google Scholar] [CrossRef]
- Sarwar, S.; Zahid, M.A.; Iqbal, S. Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method. Int. J. Biomath. 2016, 9, 17–33. [Google Scholar] [CrossRef]
- Tao, B.; Xiao, M.; Sun, Q.; Cao, J. Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model. Neurocomputing 2017, 275, 677–686. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Machado, J.A.T.; De Keyser, R. Modeling of the lung impedance using a fractional-order ladder network with constant phase elements. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Teka, W.W.; Upadhyay, R.K.; Mondal, A. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics. Neural Netw. 2017, 93, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Kaslik, E.; Radulescu, I.R. Stability and bifurcations in fractional-order gene regulatory networks. Appl. Math. Comput. 2022, 421, 126916. [Google Scholar] [CrossRef]
- Ren, H.; Karimi, H.R.; Lu, R.; Wu, Y. Synchronization of network systems via aperiodic sampled-data control with constant delay and application to unmanned ground vehicles. IEEE Trans. Ind. Electron. 2020, 67, 4980–4990. [Google Scholar] [CrossRef]
- Mislovaty, R.; Klein, E.; Kanter, I.; Kinzel, W. Public channel cryptography by synchronization of neural networks and chaotic maps. Phys. Rev. Lett. 2003, 91, 118701. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Balasubramaniam, P.; Lakshmanan, S. Synchronization of markovian jumping inertial neural networks and its applications in image encryption. Neural Netw. 2016, 83, 86–93. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhou, L. Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control. Neurocomputing 2016, 173, 759–767. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Song, Q.; Chen, J.; Huang, J. Global Mittag–Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons. Neural Netw. 2018, 105, 88–103. [Google Scholar] [CrossRef]
- Zhang, L.; Zhong, J.; Lu, J. Intermittent control for finite-time synchronization of fractional-order complex networks. Neural Netw. 2021, 144, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Park, J.H.; Cao, J. Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3230–3239. [Google Scholar] [CrossRef]
- Liu, P.; Kong, M.; Xu, M.; Sun, J.; Liu, N. Pinning synchronization of coupled fractional-order time-varying delayed neural networks with arbitrary fixed topology. Neurocomputing 2020, 400, 46–52. [Google Scholar] [CrossRef]
- Ding, Z.; Shen, Y. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Neural Netw. 2016, 76, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Yu, Y.; Wang, H. Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J. Frankl. Inst. 2016, 353, 3657–3684. [Google Scholar] [CrossRef]
- Song, Q.; Chen, Y.; Zhao, Z.; Liu, Y.; Alsaadi, F.E. Robust stability of fractional-order quaternion-valued neural networks with neutral delays and parameter uncertainties. Neurocomputing 2021, 420, 70–81. [Google Scholar] [CrossRef]
- Song, S.; Song, X.; Tejado, I. Projective synchronization for two nonidentical time-delayed fractional-order T-S fuzzy neural networks based on mixed H∞ /passive adaptive sliding mode control. Int. J. Mach. Learn. Cybern. B 2019, 10, 799–812. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, C.; Wen, S.; Li, S.; Wang, L. Lag projective synchronization of nonidentical fractional delayed memristive neural networks. Neurocomputing 2022, 469, 138–150. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Yang, X. Global Mittag–Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control. Neurocomputing 2018, 313, 324–332. [Google Scholar] [CrossRef]
- Liang, S.; Wu, R.; Chen, L. Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay. Phys. A 2016, 444, 49–62. [Google Scholar] [CrossRef]
- Wu, X.; Huang, L. Pinning adaptive and exponential synchronization of fractional-order uncertain complex neural networks with time-varying delays. Neural Process. Lett. 2019, 50, 2373–2388. [Google Scholar] [CrossRef]
- Wu, X.; Ai, Q.; Wang, Y. Adaptive and exponential synchronization of uncertain fractional-order t-s fuzzy complex networks with coupling time-varying delays via pinning control strategy. IEEE Access 2021, 9, 2007–2017. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Zhang, S.; Yu, Y.; Wang, H. Mittag–Leffler stability of fractional-order hopfield neural networks. Nonlinear Anal. 2015, 16, 104–121. [Google Scholar] [CrossRef]
- Xu, S.; Lam, J.; Ho, D.W.; Zou, Y. Global robust exponential stability analysis for interval recurrent neural networks. Phys. Lett. A 2004, 325, 124–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, X.; Li, T. Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters. Fractal Fract. 2023, 7, 571. https://doi.org/10.3390/fractalfract7080571
Wang Y, He X, Li T. Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters. Fractal and Fractional. 2023; 7(8):571. https://doi.org/10.3390/fractalfract7080571
Chicago/Turabian StyleWang, Yu, Xiliang He, and Tianzeng Li. 2023. "Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters" Fractal and Fractional 7, no. 8: 571. https://doi.org/10.3390/fractalfract7080571
APA StyleWang, Y., He, X., & Li, T. (2023). Asymptotic and Pinning Synchronization of Fractional-Order Nonidentical Complex Dynamical Networks with Uncertain Parameters. Fractal and Fractional, 7(8), 571. https://doi.org/10.3390/fractalfract7080571