Association between Opioid Dependence and Scale Free Fractal Brain Activity: An EEG Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chronic Pain Patients
2.2. Healthy Controls
2.3. Experimental Protocol and Data Collection
2.4. EEG Pre-Processing
2.5. Hurst Fractal Dimension Measure
2.6. Statistical Analysis
3. Results
3.1. HFD in the Frontal Cortex
3.2. Group Parameters and HFD
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Source | d.f. | F-Value | p-Value |
---|---|---|---|
Group | 2 | 103.99072 | 8.81304 × 10−46 |
Handedness | 1 | 45.930828 | 1.24062 × 10−11 |
Sex | 1 | 3.9130327 | 0.047919367 |
Sensor Location | 2 | 21.252392 | 5.9527 × 10−10 |
Frequency Band | 4 | 4496.2684 | 0 |
Group: Handedness | 2 | 9.0744042 | 0.000114778 |
Group: Sex | 2 | 48.19405 | 1.23817 × 10−21 |
Group: Sensor Location | 4 | 11.963476 | 1.02468 × 10−9 |
Group: Frequency Band | 8 | 133.03556 | 1.1238 × 10−221 |
Handedness: Sex | 1 | 116.09799 | 4.8946 × 10−27 |
Handedness: Sensor Location | 2 | 11.930848 | 6.60574 × 10−6 |
Handedness: Frequency Band | 4 | 129.95736 | 1.5922 × 10−110 |
Sex: Sensor location | 2 | 9.4308948 | 8.03718 × 10−5 |
Sex: Frequency Band | 4 | 109.93517 | 2.1452 × 10−93 |
Sensor Location: Frequency Band | 8 | 166.06096 | 3.1492 × 10−277 |
Group: Handedness: Sex | 2 | 119.86895 | 1.21567 × 10−52 |
Group: Handedness: Sensor Location | 4 | 25.04814 | 9.4611 × 10−21 |
Group: Handedness: Frequency Band | 8 | 105.34079 | 6.7935 × 10−175 |
Group: Sex: Sensor Location | 4 | 3.2394849 | 0.011491284 |
Group: Sex: Frequency Band | 8 | 114.83201 | 6.0527 × 10−191 |
Group: Sensor Location: Frequency Band | 16 | 93.512548 | 7.8574 × 10−304 |
Handedness: Sex: Sensor Location | 2 | 94.353797 | 1.29266 × 10−41 |
Handedness: Sex: Frequency Band | 4 | 74.442126 | 5.41974 × 10−63 |
Handedness: Sensor Location: Frequency Band | 8 | 5.8322719 | 1.79865 × 10−7 |
Sex: Sensor Location: Frequency Band | 8 | 47.625371 | 4.83496 × 10−77 |
Group: Handedness: Sex: Sensor Location | 4 | 22.371579 | 1.76906 × 10−18 |
Group: Handedness: Sex: Frequency Band | 8 | 139.54489 | 1.2061 × 10−232 |
Group: Handedness: Sensor Location: Frequency Band | 16 | 92.127707 | 3.1792 × 10−299 |
Group: Sex: Sensor Location: Frequency Band | 16 | 92.937352 | 6.4236 × 10−302 |
Handedness: Sex: Sensor Location: Frequency Band | 8 | 356.1026 | 0 |
Group: Handedness: Sex: Sensor Location: Frequency Band | 16 | 143.17433 | 0 |
References
- Dutta, S.; Ghosh, D.; Samanta, S.; Dey, S. Multifractal parameters as an indication of different physiological and pathological states of the human brain. Phys. A Stat. Mech. Its Appl. 2014, 396, 155–163. [Google Scholar] [CrossRef]
- Timashev, S.F.; Panischev, O.Y.; Polyakov, Y.S.; Demin, S.A.; Kaplan, A.Y. Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia. Phys. A Stat. Mech. Its Appl. 2012, 391, 1179–1194. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.C.; Luo, L.; Shao, J.; Zhang, C.; Ma, J.; Wang, G.F.; Liu, Y.; Peng, C.-K.; Fang, J. Assessing severity of obstructive sleep apnea by fractal dimension sequence analysis of sleep EEG. Phys. A Stat. Mech. Its Appl. 2009, 388, 4407–4414. [Google Scholar] [CrossRef]
- Figueiredo, T.C.; Vivas, J.; Peña, N.; Miranda, J.G.V. Fractal measures of video-recorded trajectories can classify motor subtypes in Parkinson’s Disease. Phys. A Stat. Mech. Its Appl. 2016, 462, 12–20. [Google Scholar] [CrossRef]
- Bellotti, R.; De Carlo, F.; Stramaglia, S. Chaotic map clustering algorithm for EEG analysis. Phys. A Stat. Mech. Its Appl. 2004, 334, 222–232. [Google Scholar] [CrossRef]
- Volkow, N.D.; Blanco, C. The changing opioid crisis: Development, challenges and opportunities. Mol. Psychiatry 2021, 26, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, K.; Shover, C.L.; Andrews, C.M.; Bohnert, A.S.; Brandeau, M.L.; Caulkins, J.P.; Chen, J.H.; Cuéllar, M.F.; Hurd, Y.L.; Juurlink, D.N.; et al. Responding to the opioid crisis in North America and beyond: Recommendations of the Stanford–Lancet Commission. Lancet 2022, 399, 555–604. [Google Scholar] [CrossRef]
- Morgane, P.; Galler, J.; Mokler, D. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog. Neurobiol. 2005, 75, 143–160. [Google Scholar] [CrossRef]
- Pereyra, M.E.; Lamberti, P.W.; Rosso, O.A. Wavelet Jensen–Shannon divergence as a tool for studying the dynamics of frequency band components in EEG epileptic seizures. Phys. A Stat. Mech. Its Appl. 2007, 379, 122–132. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Zou, J.; Zhang, J. Performance evaluation for epileptic electroencephalogram (EEG) detection by using Neyman–Pearson criteria and a support vector machine. Phys. A Stat. Mech. Its Appl. 2012, 391, 1602–1609. [Google Scholar] [CrossRef]
- Zorick, T.; Mandelkern, M.A. Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique. PLoS ONE 2013, 8, e68360. [Google Scholar] [CrossRef]
- Bhaduri, S.; Ghosh, D. Electroencephalographic Data Analysis With Visibility Graph Technique for Quantitative Assessment of Brain Dysfunction. Clin. EEG Neurosci. 2015, 46, 218–223. [Google Scholar] [CrossRef]
- He, A.; Yang, X.; Yang, X.; Ning, X. Multifractal Analysis of Epilepsy in Electroencephalogram. In Proceedings of the 2007 IEEE/ICME International Conference on Complex Medical Engineering, Beijing, China, 23–27 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1417–1420. [Google Scholar] [CrossRef]
- Gneiting, T.; Schlather, M. Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Rev. 2004, 46, 269–282. [Google Scholar] [CrossRef]
- Díaz, M.H.A.; Córdova, F. On the meaning of Hurst entropy applied to EEG data series. Procedia Comput. Sci. 2022, 199, 1385–1392. [Google Scholar] [CrossRef]
- Lahmiri, S. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Phys. A Stat. Mech. Its Appl. 2018, 490, 378–385. [Google Scholar] [CrossRef]
- Mukli, P.; Nagy, Z.; Eke, A. Multifractal formalism by enforcing the universal behavior of scaling functions. Phys. A Stat. Mech. Its Appl. 2015, 417, 150–167. [Google Scholar] [CrossRef]
- Meerschaert, M.M.; Scheffler, H.-P. A simple robust estimation method for the thickness of heavy tails. J. Stat. Plan. Inference 1998, 71, 19–34. [Google Scholar] [CrossRef]
- Lahmiri, S. Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomed. Signal Process. Control. 2017, 31, 148–155. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Stern, J.; Jeanmonod, D.; Sarnthein, J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 2006, 31, 721–731. [Google Scholar] [CrossRef]
- Sharbrough, F. American Electroencephalographic Society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 1991, 8, 200–202. Available online: https://cir.nii.ac.jp/crid/1573950399465964416.bib?lang=en (accessed on 26 July 2023).
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. Neuroimage 2014, 86, 446–460. [Google Scholar] [CrossRef]
- Yao, D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 2001, 22, 693–711. [Google Scholar] [CrossRef]
- McClellan, J.H.; Parks, T.W. A personal history of the Parks-McClellan algorithm. IEEE Signal Process. Mag. 2005, 22, 82–86. [Google Scholar] [CrossRef]
- Vigario, R.; Sarela, J.; Jousmiki, V.; Hamalainen, M.; Oja, E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans. Biomed. Eng. 2000, 47, 589–593. [Google Scholar] [CrossRef]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef]
- Díaz, H.; Maureira, F.; Cohen, E.; Córdova, F.; Palominos, F.; Otárola, J.; Cañete, L. Individual Differences in the Order/Chaos Balance of the Brain Self-Organization. Ann. Data Sci. 2015, 2, 421–438. [Google Scholar] [CrossRef]
- Volos, C.; Jafari, S.; Kengne, J.; Munoz-Pacheco, J.; Rajagopal, K. Nonlinear Dynamics and Entropy of Complex Systems with Hidden and Self-Excited Attractors. Entropy 2019, 21, 370. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, P. Estimation of Lyapunov spectrum and model selection for a chaotic time series. Appl. Math. Model. 2012, 36, 6090–6099. [Google Scholar] [CrossRef]
- Zuo, X.N.; Di Martino, A.; Kelly, C.; Shehzad, Z.E.; Gee, D.G.; Klein, D.F.; Castellanos, F.X.; Biswal, B.B.; Milham, M.P. The oscillating brain: Complex and reliable. Neuroimage 2010, 49, 1432–1445. [Google Scholar] [CrossRef]
- Racz, F.S.; Stylianou, O.; Mukli, P.; Eke, A. Multifractal Dynamic Functional Connectivity in the Resting-State Brain. Front. Physiol. 2018, 9, 1704. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Zhou, W.; Yuan, Q.; Cai, D.; Zeng, Y. EEG non-linear feature extraction using correlation dimension and Hurst exponent. Neurol. Res. 2011, 33, 908–912. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.-Y.; Stohler, C.S.; Herr, D.R. Role of the Prefrontal Cortex in Pain Processing. Mol. Neurobiol. 2019, 56, 1137–1166. [Google Scholar] [CrossRef]
- Redish, A.D.; Jensen, S.; Johnson, A. Addiction as vulnerabilities in the decision process. Behav. Brain Sci. 2008, 31, 461–487. [Google Scholar] [CrossRef]
- Baker, T.B.; Piper, M.E.; McCarthy, D.E.; Majeskie, M.R.; Fiore, M.C. Addiction Motivation Reformulated: An Affective Processing Model of Negative Reinforcement. Psychol. Rev. 2004, 111, 33–51. [Google Scholar] [CrossRef]
- Yang, G.-Y.; Center, N.; Sun, J.; Tong, S. Reorganization of Brain Networks in Aging and Age-related Diseases. Aging Dis. 2012, 3, 181. [Google Scholar]
- Navratilova, E.; Porreca, F. Reward and motivation in pain and pain relief. Nat. Neurosci. 2014, 17, 1304–1312. [Google Scholar] [CrossRef]
- Symonds, L.L.; Gordon, N.S.; Bixby, J.C.; Mande, M.M. Right-Lateralized Pain Processing in the Human Cortex: An fMRI Study. J. Neurophysiol. 2006, 95, 3823–3830. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, N.; Bonnette, S.; Gao, J.; Riley, M.A. Adaptive Fractal Analysis Reveals Limits to Fractal Scaling in Center of Pressure Trajectories. Ann. Biomed. Eng. 2013, 41, 1646–1660. [Google Scholar] [CrossRef] [PubMed]
Participant | Age | Sex | Opioid Status | Handedness |
---|---|---|---|---|
C1 | 59 | F | N | R |
C2 | 61 | F | N | R |
C3 | 60 | F | N | R |
C4 | 52 | F | N | R |
C5 | 36 | M | N | R |
C6 | 25 | M | N | R |
C7 | 29 | F | N | L |
C8 | 28 | M | N | R |
C9 | 32 | F | N | R |
N1 | 73 | M | N | R |
N2 | 66 | F | N | R |
N3 | 55 | F | N | R |
N4 | 92 | F | N | R |
N5 | 39 | M | N | R |
O1 | 58 | F | Y | R |
O2 | 75 | M | Y | R |
O3 | 47 | F | Y | R |
O4 | 39 | F | Y | R |
O5 | 70 | F | Y | L |
O6 | 74 | F | Y | L |
O7 | 64 | F | Y | L |
O8 | 47 | M | Y | R |
O9 | 47 | F | Y | R |
Statistical Analysis | Parameter | ||||
---|---|---|---|---|---|
Group | Handedness | Sex | Sensor Localization | EEG Frequency Band | |
n-way ANOVA | p-value | p-value | p-value | p-value | p-value |
8.8130 × 10−46 | 1.2406 × 10−11 | 0.0479 | 5.9527 × 10−10 | 0 | |
F-statistic | F-statistic | F-statistic | F-statistic | F-statistic | |
103.9907 | 45.9308 | 3.913 | 21.2524 | 4.4963 × 104 | |
Paired t-test | p-value | p-value | p-value | p-value | p-value |
N/A | 4.2005 × 10−13 | 1.7936 × 10−4 | N/A | N/A | |
t-statistic | t-statistic | t-statistic | t-statistic | t-statistic | |
N/A | 7.2512 | 3.7468 | N/A | N/A | |
Kruskal-Wallis | p-value | p-value | p-value | p-value | p-value |
7.6782 × 10−37 | 1.5328 × 10−15 | 7.0521 × 10−5 | 7.0059 × 10−8 | 0 | |
Chi-square | Chi-square | Chi-square | Chi-square | Chi-square | |
166.3145 | 63.5891 | 15.7968 | 32.9479 | 1.5035 × 104 | |
Wilcoxon Signed Rank Test | p-value | p-value | p-value | p-value | p-value |
N/A | 1.5328 × 10−15 | 7.0521 × 10−5 | N/A | N/A | |
z-statistic | z-statistic | z-statistic | z-statistic | z-statistic | |
N/A | 7.9743 | 3.9745 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirpal, P.; Sikora, W.A.; Azizoddin, D.R.; Refai, H.H.; Yang, Y. Association between Opioid Dependence and Scale Free Fractal Brain Activity: An EEG Study. Fractal Fract. 2023, 7, 659. https://doi.org/10.3390/fractalfract7090659
Sirpal P, Sikora WA, Azizoddin DR, Refai HH, Yang Y. Association between Opioid Dependence and Scale Free Fractal Brain Activity: An EEG Study. Fractal and Fractional. 2023; 7(9):659. https://doi.org/10.3390/fractalfract7090659
Chicago/Turabian StyleSirpal, Parikshat, William A. Sikora, Desiree R. Azizoddin, Hazem H. Refai, and Yuan Yang. 2023. "Association between Opioid Dependence and Scale Free Fractal Brain Activity: An EEG Study" Fractal and Fractional 7, no. 9: 659. https://doi.org/10.3390/fractalfract7090659
APA StyleSirpal, P., Sikora, W. A., Azizoddin, D. R., Refai, H. H., & Yang, Y. (2023). Association between Opioid Dependence and Scale Free Fractal Brain Activity: An EEG Study. Fractal and Fractional, 7(9), 659. https://doi.org/10.3390/fractalfract7090659