Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann–Liouville and Quantum Fractional Derivatives
Abstract
:1. Introduction
2. Preliminaries
- (1)
- , , ;
- (2)
- , , where
3. Three Positive Solutions
- (H1)
- and on for a constant
- (D1)
- , and for ;
- (D2)
- for ;
- (D3)
- for with
- (F1)
- , ;
- (F2)
- , ;
- (F3)
- , .
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. Roy. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Ernst, T. The History of q-Calculus and a New Method; UUDM Report 2000:16; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000. [Google Scholar]
- Atici, F.M.; Eloe, P.W. Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 2007, 14, 341–352. [Google Scholar] [CrossRef]
- Rajković, P.M.; Marinković, S.D.; Stanković, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Ferreira, R.A.C. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70, 1–10. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Yu, C. Unique iterative solution for high-order nonlinear fractional q-difference equation based on ψ-(h, r)-concave operators. Bound. Value Probl. 2023, 37. [Google Scholar] [CrossRef]
- Ulke, O.; Topal, F.S. Existence and uniqueness of solutions for fractional q-difference equations. Miskolc Math. Notes 2023, 24, 473–487. [Google Scholar] [CrossRef]
- Ulke, O.; Topal, F.S. Existence result for fractional q-difference equations on the half-line. Filomat 2023, 37, 1591–1605. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, Y.; Chen, H.; Feng, W. Positive solutions for a class of integral boundary value problem of fractional q-difference equations. Symmetry 2022, 14, 2465. [Google Scholar] [CrossRef]
- Yu, C.; Li, S.; Li, J.; Wang, J. Triple-positive solutions for a nonlinear singular fractional q-difference equation at resonance. Fractal Fract. 2022, 6, 689. [Google Scholar] [CrossRef]
- Yu, C.; Wang, S.; Wang, J.; Li, J. Solvability criterion for fractional q-integro-difference system with Riemann-Stieltjes integrals conditions. Fractal Fract. 2022, 6, 554. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S. A coupled system involving nonlinear fractional q-difference stationary Schrödinger equation. J. Appl. Math. Comput. 2022, 68, 3317–3325. [Google Scholar] [CrossRef]
- Ma, K.; Gao, L. The solution theory for the fractional hybrid q-difference equations. J. Appl. Math. Comput. 2022, 68, 2971–2982. [Google Scholar] [CrossRef]
- Bonanno, G.; Rodríguez-López, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 717–744. [Google Scholar] [CrossRef]
- Rodríguez-López, R.; Tersian, S. Multiple solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 2014, 17, 1016–1038. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Rodríguez-López, R. Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects. Chaos Solitons Fractals 2017, 102, 254–263. [Google Scholar] [CrossRef]
- Nyamoradi, N.; Rodríguez-López, R. On boundary value problems for impulsive fractional differential equations. Appl. Math. Comput. 2015, 271, 874–892. [Google Scholar] [CrossRef]
- Song, S.; Cui, Y. Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance. Bound. Value Probl. 2020, 23. [Google Scholar] [CrossRef]
- Elaiw, A.A.; Hafeez, F.; Jeelani, M.B.; Awadalla, M.; Abuasbeh, K. Existence and uniqueness results for mixed derivative involving fractional operators. AIMS Math. 2023, 8, 7377–7393. [Google Scholar] [CrossRef]
- Zada, A.; Alam, S.; Riaz, U. Ulam’s stability of impulsive sequential coupled system of mixed order derivatives. Int. J. Nonlinear Anal. Appl. 2022, 13, 57–73. [Google Scholar]
- Bazhlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Kostić, M. Abstract Volterra Integro-Differential Equations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Kostić, M. Abstract Degenerate Volterra Integro-Differential Equations; Mathematical Institute SANU: Belgrade, Serbia, 2020. [Google Scholar]
- Zhang, S. Positive solution of singular boundary value problem for nonlinear fractional differential equation with nonlinearity that changes sign. Positivity 2012, 16, 177–193. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Leggett, R.W.; Williams, L.R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyamoradi, N.; Ntouyas, S.K.; Tariboon, J. Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann–Liouville and Quantum Fractional Derivatives. Fractal Fract. 2023, 7, 685. https://doi.org/10.3390/fractalfract7090685
Nyamoradi N, Ntouyas SK, Tariboon J. Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann–Liouville and Quantum Fractional Derivatives. Fractal and Fractional. 2023; 7(9):685. https://doi.org/10.3390/fractalfract7090685
Chicago/Turabian StyleNyamoradi, Nemat, Sotiris K. Ntouyas, and Jessada Tariboon. 2023. "Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann–Liouville and Quantum Fractional Derivatives" Fractal and Fractional 7, no. 9: 685. https://doi.org/10.3390/fractalfract7090685
APA StyleNyamoradi, N., Ntouyas, S. K., & Tariboon, J. (2023). Existence of Positive Solutions to Boundary Value Problems with Mixed Riemann–Liouville and Quantum Fractional Derivatives. Fractal and Fractional, 7(9), 685. https://doi.org/10.3390/fractalfract7090685