Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay
Abstract
:1. Introduction and Position of Problem
1.1. Results and Discussion
1.2. Position of Problem
- (A1)
- If ,, is such that, then for everythe following conditions hold
- (i)
- ,
- (ii)
- ,
- (iii)
- ,where is a constant; , K is continuous, N is locally bounded and are independent of .
- (A2)
- For the functionin,is a-valued function on.
- (A3)
- The spaceis complete.
2. Preliminaries and Tools
Vector Metric Space
3. Random Variable and Some Selection Theorems
- (i)
- The random equation has a random solution, i.e., there is a measurable function such that
- (ii)
- The set
- (i)
- The map is jointly measurable ,
- (ii)
- The map is continuous and .
4. Main Result: Existence of Solutions
The Convex Case
- (H1)
- The function
- (a)
- is measurable;
- (b)
- is upper semi-continuous for a.e.
- (H2)
- There exist bounded measurable functions
- (H3)
- There exist positive constants such that
5. Conclusions
- 1.
- Applying a novel random fixed-point theorem to a system of impulsive random differential equations was our primary objective.
- 2.
- We provided a random application of the separable vector-valued Banach space Leray–Schauder fixed-point theorem in nonlinear case.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.H.; Wang, Z.C. Oscillation and asympotic behaviour of solutions of delay differential equations with impulses. Ann. Differ. Equ. 1994, 10, 61–68. [Google Scholar]
- Zhang, Y.; Sun, J. Stability of impulsive infinite delay differential equations. Appl. Math. Lett. 2006, 19, 1100–1106. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, J. On Existence and Uniqueness of Random Impulsive Differential Equations. J. Syst. Sci. Complex 2016, 29, 300–314. [Google Scholar] [CrossRef]
- Agur, Z.; Cojocaru, L.; Mazaur, G.; Anderson, R.M.; Danon, Y.L. Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA 1993, 90, 11698–11702. [Google Scholar] [CrossRef] [PubMed]
- Kruger-Thiemr, E. Fromal theory of drug dosage regiments I. J. Theoret. Biol. 1966, 13, 212–235. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K. Impulsive Differential Equations and Inclusions, Contemporary Mathematics and Its Applications; Hindawi: New York, NY, USA, 2006; Volume 2. [Google Scholar]
- Wang, L.; Li, X. Stability analysis of impulsive delayed switched systems and applications. Math. Methods Appl. Sci. 2012, 35, 1161–1174. [Google Scholar] [CrossRef]
- Samoilenko, A.M.; Perestyuk, N.A. Impulsive Differential Equations; World Scientific: Singapore, 1995. [Google Scholar]
- Lakshmikantham, V.; Bainov, D.D.; Simeonov, P.S. Theory of Impulsive Differential Equations; World Scientific: Singapore, 1989. [Google Scholar]
- Bainov, D.D.; Simeonov, P.S. Systems with Impulse Effect; Ellis Horwood: Chichister, UK, 1989. [Google Scholar]
- Djebali, S.; Gorniewicz, L.; Ouahab, A. Solutions Sets for Differential Equations and Inclusions; de Gruyter Series in Nonlinear Analysis and Applications; de Gruyter: Berlin, Germany, 2013; Volume 18. [Google Scholar]
- Graef, J.R.; Henderson, J.; Ouahab, A. Impulsive Differential Inclusions. A Fixed Point Approach; De Gruyter Series in Nonlinear Analysis and Applications; de Gruyter: Berlin, Germany, 2013; Volume 20. [Google Scholar]
- Guo, D. Second order integro-differential equations of Volterra type on un bounded domains in a Banach space. Nonl. Anal. 2000, 41, 465–476. [Google Scholar] [CrossRef]
- Guo, D. Multiple positive solutions for first order nonlinear integro-differential equations in a Banach space. Nonl. Anal. 2003, 53, 183–195. [Google Scholar] [CrossRef]
- Liu, Y. Boundary value problems for second order differential equations on un- bounded domain in a Banach space. Appl. Math. Comput. 2003, 135, 569–583. [Google Scholar]
- Liu, Y. Boundary value problems on half-line for functional differential equations with infinite delay in a Banach space. Nonlinear Anal. 2003, 52, 1695–1708. [Google Scholar] [CrossRef]
- Mavridis, K.G.; Tsamatos, P.C. Positive solutions for first order differential nonlinear functional boundary value problems on infinite intervals. Electron. J. Qual. Theory Differ. Equ. 2004, 8, 1–18. [Google Scholar] [CrossRef]
- Mavridis, K.G.; Tsamatos, P.C. Positive solutions for a Floquet functional boundary value problem. J. Math. Anal. Appl. 2004, 296, 165–182. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D. Infinite Interval Problems for Differential, Difference and Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Aubin, J.P. Impulse Differential Inclusions and Hybrid Systems: A Viability Approach; Lecture Notes; Université Paris-Dauphine: Paris, France, 2002. [Google Scholar]
- Bellman, R.; Cook, K.L. Differential-Difference Equations; RAND Corporation: Santa Monica, CA, USA, 1967; p. 548. [Google Scholar]
- Yurko, V. Recovering Differential Operators with a Retarded Argument. Differ. Equ. 2019, 55, 510–514. [Google Scholar] [CrossRef]
- Vinodkuman, A. Existence and uniqueness of solutions for random impulsive differential equation. Malaya J. Math. 2012, 1, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, W. The existence and exponential stability of random impulsive fractional differential equations. Adv. Differ. Equ. 2018, 2, 404. [Google Scholar] [CrossRef]
- Hale, J.K.; Kato, J. Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 1978, 21, 11–41. [Google Scholar]
- Li, Y.; Liu, B. Existence of solution of nonlinear neutral stochastic differential inclusions with infinite delay. Stoch. Anal. Appl. 2007, 25, 397–415. [Google Scholar] [CrossRef]
- Sinacer, M.L.; Nieto, J.J. Ouahab, A. Random fixed point theorem in generalized Banach space and applications. Random Oper. Stoch. Equ. 2016, 24, 93–112. [Google Scholar] [CrossRef]
- Blouhi, T.; Caraballo, T.; Ouahab, A. Existence and stability results for semilinear systems of impulsive stochastic differential equations with fractional Brownian motion. Stoch. Anal. Appl. 2016, 34, 792–834. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Ntouyas, S.K.; Ouahab, A. Boundary value problems for impulsive functional differential equations with infinite delay. Int. J. Math. Comp. Sci. 2006, 1, 23–35. [Google Scholar]
- Svetlin, G.G.; Zennir, K. Existence of solutions for a class of nonlinear impulsive wave equations. Ricerche Mat. 2022, 71, 211–225. [Google Scholar]
- Svetlin, G.G.; Zennir, K.; Slah ben khalifa, W.A.; Mohammed yassin, A.H.; Ghilen, A.; Zubair, S.A.M.; Osman, N.O.A. Classical solutions for a BVP for a class impulsive fractional partial differential equations. Fractals 2022, 30, 2240264. [Google Scholar]
- Svetlin, G.G.; Bouhali, K.; Zennir, K. A New Topological Approach to Target the Existence of Solutions for Nonlinear Fractional Impulsive Wave Equations. Axioms 2022, 11, 721. [Google Scholar]
- Svetlin, G.G.; Zennir, K.; Bouhali, K.; Alharbi, R.; Altayeb, Y.; Biomy, M. Existence of solutions for impulsive wave equations. AIMS Math. 2023, 8, 8731–8755. [Google Scholar]
- Svetlin, G.G.; Zennir, K. Boundary Value Problems on Time Scales; Chapman and Hall/CRC Press: New York, NY, USA, 2021; p. 692. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moumen, A.; Ladrani, F.Z.; Ferhat, M.; Benaissa Cherif, A.; Bouye, M.; Bouhali, K. Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay. Fractal Fract. 2024, 8, 10. https://doi.org/10.3390/fractalfract8010010
Moumen A, Ladrani FZ, Ferhat M, Benaissa Cherif A, Bouye M, Bouhali K. Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay. Fractal and Fractional. 2024; 8(1):10. https://doi.org/10.3390/fractalfract8010010
Chicago/Turabian StyleMoumen, Abdelkader, Fatima Zohra Ladrani, Mohamed Ferhat, Amin Benaissa Cherif, Mohamed Bouye, and Keltoum Bouhali. 2024. "Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay" Fractal and Fractional 8, no. 1: 10. https://doi.org/10.3390/fractalfract8010010
APA StyleMoumen, A., Ladrani, F. Z., Ferhat, M., Benaissa Cherif, A., Bouye, M., & Bouhali, K. (2024). Existence Result for Coupled Random First-Order Impulsive Differential Equations with Infinite Delay. Fractal and Fractional, 8(1), 10. https://doi.org/10.3390/fractalfract8010010