Controllability of Fractional Complex Networks
Abstract
:1. Introduction
2. Preliminaries
3. Controllability Analysis of Linear Fractional Complex Networks
4. Controllability Analysis of Nonlinear Fractional Complex Networks
4.1. Nonlinear Networks Represented by a Weighted Adjacency Matrix
4.2. Nonlinear Networks Represented by a Laplacian Matrix
5. Numerical Implementation
6. Conclusions
- •
- Solve the other control problems like optimal control, approximate controllability, etc.;
- •
- Develop the controllability and observability on complex fractional time-varying systems;
- •
- Implement controllability for complex time-varying systems numerically using the Matlab/Simulink method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, L.Y.; Kumara, S.; Albert, R. Complex networks: An engineering view. IEEE Circuits Syst. Mag. 2010, 10, 10–25. [Google Scholar] [CrossRef]
- MacArthur, B.D.; Sánchez-García, R.J.; Anderson, J.W. Symmetry in complex networks. Discret. Appl. Math. 2008, 156, 3525–3531. [Google Scholar] [CrossRef]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef]
- Barabási, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, C.; Di, Z.; Wang, W.-X.; Lai, Y.-C. Exact controllability of complex networks. Nat. Commun. 2013, 4, 2447. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Trujillo, J.J. Controllability of fractional damped dynamical systems. Appl. Math. Comput. 2015, 257, 66–73. [Google Scholar] [CrossRef]
- Xiang, L.; Chen, F.; Ren, W.; Chen, G. Advances in network controllability. IEEE Circuits Syst. Mag. 2019, 19, 8–32. [Google Scholar] [CrossRef]
- Liu, B.; Chu, T.; Wang, L.; Xie, G. Controllability of a leader-follower dynamic network with switching topology. IEEE Trans. Autom. Control 2008, 53, 1009–1013. [Google Scholar] [CrossRef]
- Cai, N. On quantitatively measuring controllability of complex networks. Phys. A 2017, 474, 282–292. [Google Scholar] [CrossRef]
- Chen, G. Pinning control and controllability of complex dynamical networks. Int. J. Autom. Comput. 2017, 14, 1–9. [Google Scholar] [CrossRef]
- Whalen, A.J.; Brennan, S.N.; Sauer, T.D.; Schiff, S.J. Observability and controllability of nonlinear networks: The role of symmetry. Phys. Rev. X 2015, 5, 011005. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Slotine, J.J.; Barabási, A.L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef]
- Ma, W.; Ma, N.; Dai, C.; Chen, Y.Q.; Wang, X. Fractional modeling and optimal control strategies for mutated COVID-19 pandemic. Math. Methods Appl. Sci. 2022, 1–25. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equation; John Wiley and Sons: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Li, C.P.; Deng, W.H.; Xu, D. Chaos synchronization of the Chua system with a fractional order. Phys. A 2006, 360, 171–185. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.Y.; Feliu, V. Fractional-Order Systems and Controls; Springer-Verlag: London, UK, 2010. [Google Scholar]
- Ma, W.; Li, Z.; Ma, N. Synchronization of discrete fractional-order complex networks with and without unknown topology. Chaos 2022, 32, 013112. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Ahn, H.S.; Xue, D.Y. Robust controllability of interval fractional order linear time invariant systems. Signal Process. 2006, 86, 2794–2802. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rodríguez-Germá, L.; Trujillo, J.J. Controllability results for nonlinear fractional order dynamical systems. J. Optim. Theory Appl. 2013, 156, 33–44. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Li, H. Controllability result of nonlinear higher order fractional damped dynamical system. J. Nonlinear Sci. Appl. 2017, 10, 325–337. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 2009, 58, 1838–1843. [Google Scholar] [CrossRef]
- Govindaraj, V.; Balachandran, K.; George, R.K. Numerical Approach for the Controllability of Composite Fractional Dynamical Systems. J. Appl. Nonlinear Dyn. 2018, 7, 59–72. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.Y.; Xu, B.B.; Zhang, R.F. Controllability of fractional-order directed complex networks. Mod. Phys. Lett. B 2014, 28, 1450211. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Xu, B.B.; Zhou, R. Controllability of fractional-order directed complex networks with self loop and double edge structure. J. Circuits Syst. Comput. 2015, 24, 1550087. [Google Scholar] [CrossRef]
- Wang, L.; Chen, G.; Wang, X.; Tang, W.K.S. Controllability of networked MIMO systems. Automatica 2016, 69, 405–409. [Google Scholar] [CrossRef]
- García, P.M.I. Analyzing controllability of neural networks. Wseas Trans. Circuits Syst. 2019, 18, 1–6. [Google Scholar]
- Biggs, N.L. Algebraic Graph Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Li, C.P.; Deng, W.H. Remarks on fractional derivatives. Appl. Math. Comput. 2007, 187, 777–784. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: San Diego, CA, USA, 1998. [Google Scholar]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Govindaraj, V.; George, R.K. Controllability of fractional dynamical systems: A functional analytic approach. Math. Control Relat. Fields 2017, 7, 537. [Google Scholar] [CrossRef]
- Eǧecioǧlu, Ö.; Garsia, A.M. Lessons in Enumerative Combinatorics; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Xue, D.Y. FOTF Toolbox. MATLAB Central File Exchange. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox (accessed on 2 October 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, X.; Ma, W.; Li, X. Controllability of Fractional Complex Networks. Fractal Fract. 2024, 8, 43. https://doi.org/10.3390/fractalfract8010043
Bao X, Ma W, Li X. Controllability of Fractional Complex Networks. Fractal and Fractional. 2024; 8(1):43. https://doi.org/10.3390/fractalfract8010043
Chicago/Turabian StyleBao, Xionggai, Weiyuan Ma, and Xin Li. 2024. "Controllability of Fractional Complex Networks" Fractal and Fractional 8, no. 1: 43. https://doi.org/10.3390/fractalfract8010043
APA StyleBao, X., Ma, W., & Li, X. (2024). Controllability of Fractional Complex Networks. Fractal and Fractional, 8(1), 43. https://doi.org/10.3390/fractalfract8010043