Fractal-Based Pattern Quantification of Mineral Grains: A Case Study of Yichun Rare-Metal Granite
Abstract
:1. Introduction
2. Study Area and Data Used
3. Methods
3.1. Image Annotation
Algorithm 1: The SAM for mineral photomicrograph image segmentation | ||||
Input: Image dataset I, image prompt of classes C (quartz, lepidolite, albite), flag indi cating whether to generate multiple masks or a single mask Multimask. | ||||
Output: Predicted mask set M. | ||||
Initialize image mask m | ||||
for i in I do | ||||
image_tensor ← preprocess(i) | ||||
prompt_encoding ← prompt_encoder(C) | ||||
image_embedding ← image_encoder(image_tensor) | ||||
mask_prediction ← mask_decoder(image_embedding, prompt_encoding) | ||||
if multimask is True then | ||||
m ← multiple. mask_prediction | ||||
else | ||||
m ← single. mask_prediction | ||||
end if | ||||
M.append(m) | ||||
end |
3.2. Box-Counting Fractal Method
3.3. Perimeter–Area Fractal Model
3.4. Multifractal Method
Algorithm 2: The moment method for multifractal analysis | ||||||
Input: Image dataset I, list of q values Q, list of box sizes B. | ||||||
Output: The generalized fractal dimension Dq; the singularity index α, multifractal spectrum F. | ||||||
for image in I do | ||||||
for q in Q do | ||||||
for box size in B do | ||||||
P ← pixels(box size)/total_pixels(image) | ||||||
end | ||||||
probabilities.append (P) | ||||||
moment ← (probabilities, q) | ||||||
fractal_dimension = (B, moment, q) | ||||||
alpha← (q, fractal_dimension) | ||||||
spectrum ← (Q, I, alpha) | ||||||
end | ||||||
Dq.append(fractal_dimension) | ||||||
α.append(alpha) | ||||||
F.append(spectrum) | ||||||
end |
4. Results and Discussion
4.1. Annotation Effectiveness and Scaling Invariance of Digitized Mineral Grains
4.2. Fractal Results of Regular Minerals
4.3. Fractal Results of Snowball Texture and Their Implication for Mineral Growth Mechanism
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. The Fractal Geometry of Nature. Am. J. Phys. 1983, 51, 286–287. [Google Scholar] [CrossRef]
- Evertsz, C.J.; Mandelbrot, B.B. Multifractal measures. Chaos Fract. 1992, 1992, 921–953. [Google Scholar]
- Wilson, B.; Dewers, T.; Reches, Z.; Brune, J. Particle size and energetics of gouge from earthquake rupture zones. Nature 2005, 434, 749–752. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Cheng, Q.; Chen, G. New fractal evidence of Pacific plate subduction in the late Mesozoic, Great Xing’an range, Northeast China. J. Earth Sci-China 2019, 30, 1031–1040. [Google Scholar] [CrossRef]
- Cheng, Q. Fractal Derivatives and Singularity Analysis of Frequency—Depth Clusters of Earthquakes along Converging Plate Boundaries. Fractal Fract. 2023, 7, 721. [Google Scholar] [CrossRef]
- Ali, S.M.; Abdelrahman, K. The Impact of Fractal Dimension, Stress Tensors, and Earthquake Probabilities on Seismotectonic Characterisation in the Red Sea. Fractal Fract. 2023, 7, 658. [Google Scholar] [CrossRef]
- Zhu, P.; Liu, Y.; Cheng, Q. The spatial distribution differences between Jiaodong and Luxi terrane gold deposits by fractal method and its implications for the source of gold. Miner. Depos. 2023, 42, 639–645, (In Chinese with English abstract). [Google Scholar]
- Agterberg, F.P. Fractals and spatial statistics of point patterns. J. Earth Sci.-China 2013, 24, 1–11. [Google Scholar] [CrossRef]
- Chen, G.; Liu, T.; Sun, J.; Cheng, Q.; Sahoo, B.; Zhang, Z.; Zhang, H. Gravity method for investigating the geological structures associated with W–Sn polymetallic deposits in the Nanling Range, China. J. Appl. Geophys. 2015, 120, 14–25. [Google Scholar] [CrossRef]
- Sun, T.; Chen, F.; Zhong, L.; Liu, W.; Wang, Y. GIS-based mineral prospectivity mapping using machine learning methods: A case study from Tongling ore district, eastern China. Ore Geol. Rev. 2019, 109, 26–49. [Google Scholar] [CrossRef]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Xia, Q.; Agterberg, F. Application of fractal models to distinguish between different mineral phases. Math. Geosci. 2009, 41, 71–80. [Google Scholar] [CrossRef]
- Cai, Q.; Tan, K.; Zhu, J.; Zeng, S. Multifractal Characteristics of Uranium Grade Distribution and Spatial Regularities in a Sandstone-Type Uranium Deposit in Xinjiang, China. Fractal Fract. 2023, 7, 704. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, K.; Hou, W.; Erten, O. Identifying geochemical anomaly through spatially anisotropic singularity mapping: A case study from silver-gold deposit in Pangxidong district, SE China. J. Geochem. Explor. 2020, 210, 106453. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, J.; Hou, W.; Wang, Z.; Zhou, Y.; Erten, O. A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. J. Geochem. Explor. 2018, 189, 122–137. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.; Zhou, K. New insights into element distribution patterns in geochemistry: A perspective from fractal density. Nat. Resour. Res. 2019, 28, 5–29. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M.; Cheng, Q. Fractal/multifractal modelling of geochemical exploration data. J. Geochem. Explor. 2012, 122, 1–3. [Google Scholar] [CrossRef]
- Cheng, Q. The perimeter-area fractal model and its application to geology. Math. Geol. 1995, 27, 69–82. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, H.; Cheng, Q. Fractal geometry of element distribution on mineral surfaces. Math. Geol. 2001, 33, 217–228. [Google Scholar]
- Cheng, Q. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geol. Rev. 2007, 32, 314–324. [Google Scholar] [CrossRef]
- Li, C.; Ma, T.; Shi, J. Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J. Geochem. Explor. 2003, 77, 167–175. [Google Scholar] [CrossRef]
- Afzal, P.; Alghalandis, Y.F.; Khakzad, A.; Moarefvand, P.; Omran, N.R. Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling. J. Geochem. Explor. 2011, 108, 220–232. [Google Scholar] [CrossRef]
- Cheng, Q.; Xu, Y.; Grunsky, E. Integrated spatial and spectrum method for geochemical anomaly separation. Nat. Resour. Res. 2000, 9, 43–52. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, K.; Cheng, Q. A new method for geochemical anomaly separation based on the distribution patterns of singularity indices. Comput. Geosci. 2017, 105, 139–147. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, Z.; Chen, J.; Zhou, Y. A batch sliding window method for local singularity mapping and its application for geochemical anomaly identification. Comput. Geosci. 2016, 90, 189–201. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Q. Characterization of micro-texture of quartz mylonite deformation process using fractal P–A model. Earth Sci.-J. China U. Geosci. 2006, 31, 361–365. [Google Scholar]
- Wang, Z.; Cheng, Q.; Cao, L.; Xia, Q.; Chen, Z. Fractal modelling of the microstructure property of quartz mylonite during deformation process. Math. Geol. 2007, 39, 53–68. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, Q.; Xu, D.; Dong, Y. Fractal modeling of sphalerite banding in Jinding Pb-Zn deposit, Yunnan, southwestern China. J. China U. Geosci. 2008, 19, 77–84. [Google Scholar]
- Peternell, M.; Kruhl, J.H. Automation of pattern recognition and fractal-geometry-based pattern quantification, exemplified by mineral-phase distribution patterns in igneous rocks. Comput. Geosci. 2009, 35, 1415–1426. [Google Scholar] [CrossRef]
- Golsanami, N.; Fernando, S.G.; Jayasuriya, M.N.; Yan, W.; Dong, H.; Cui, L.; Dong, X.; Barzgar, E. Fractal properties of various clay minerals obtained from SEM images. Geofluids 2021, 2021, 5516444. [Google Scholar] [CrossRef]
- Yu, C.; Liu, J. Fractal and multifractal analyses of sphalerite banding at the Zhaishang gold deposit, western Qinling, China. Eur. J. Mineral. 2015, 27, 511–520. [Google Scholar] [CrossRef]
- Dinç Göğüş, Ö.; Avşar, E.; Develi, K.; Çalık, A. Quantifying the Rock Damage Intensity Controlled by Mineral Compositions: Insights from Fractal Analyses. Fractal Fract. 2023, 7, 383. [Google Scholar] [CrossRef]
- Xu, D.; Ke, X.; Xie, S.; Cheng, Q. Scaling properties of feldspar and quartz in micro-images of ideal granites. J. China U. Geosci. 2008, 19, 327–333. [Google Scholar]
- Xie, S.; Cheng, Q.; Li, Z.; Xing, X.; Chen, S. Assessing Microstructures of Ore-minerals by multifractal. Earth Sci.-J. China U. Geosci. 2009, 34, 263–269, (In Chinese with English abstract). [Google Scholar]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- OpenAI. ChatGPT. Available online: https://openai.com/blog/chatgpt/ (accessed on 15 December 2023).
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment anything. arXiv 2023, arXiv:2304.02643. [Google Scholar]
- Chen, F.; Chen, L.; Han, H.; Zhang, S.; Zhang, D.; Liao, H. The ability of Segmenting Anything Model (SAM) to segment ultrasound images. Biosci. Trends 2023, 17, 211–218. [Google Scholar] [CrossRef]
- Yin, L.; Zhu, J.; Hu, S. Multiple-staged granite evolution and Ta-Nb mineralization in South China. J. Asian Earth Sci. 1993, 8, 321–328. [Google Scholar]
- Yin, L.; Pollard, P.J.; Hu, S.; Taylor, R.G. Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, South China. Econ. Geol. 1995, 90, 577–585. [Google Scholar] [CrossRef]
- Pollard, P.J. The Yichun Ta-Sn-Li deposit, South China: Evidence for extreme chemical fractionation in F-Li-P-rich magma. Econ. Geol. 2021, 116, 453–469. [Google Scholar] [CrossRef]
- Wu, M.; Samson, I.M.; Zhang, D. Textural features and chemical evolution in Ta-Nb oxides: Implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, southeastern China. Econ. Geol. 2018, 113, 937–960. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; He, P.; Li, W.; Yu, Y.; Chen, L. In situ analyses of micas in the Yashan granite, South China: Constraints on magmatic and hydrothermal evolutions of W and Ta–Nb bearing granites. Ore Geol. Rev. 2015, 65, 793–810. [Google Scholar] [CrossRef]
- Huang, X.; Wang, R.; Chen, X.; Hu, H.; Liu, C. Vertical variations in the mineralogy of the Yichun topaz–lepidolite granite, Jiangxi Province, southern China. Can. Mineral. 2002, 40, 1047–1068. [Google Scholar] [CrossRef]
- Ning, G.; Liang, H.; Jiang, Z.; Zhang, H.; Liao, H. The potential of ‘Segment Anything’ (SAM) for universal intelligent ultrasound image guidance. Biosci. Trends 2023, 17, 230–233. [Google Scholar] [CrossRef]
- Meta AI. Segment Anything. Available online: https://segment-anything.com (accessed on 15 December 2023).
- Psychogyios, K.; Leligou, H.C.; Melissari, F.; Bourou, S.; Anastasakis, Z.; Zahariadis, T. SAMStyler: Enhancing Visual Creativity with Neural Style Transfer and Segment Anything Model (SAM). IEEE Access 2023, 11, 100256–100267. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- He, K.; Chen, X.; Xie, S.; Li, Y.; Dollár, P.; Girshick, R. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16000–16009. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Shi, P.; Qiu, J.; Abaxi, S.M.D.; Wei, H.; Lo, F.P.-W.; Yuan, W. Generalist vision foundation models for medical imaging: A case study of segment anything model on zero-shot medical segmentation. Diagnostics 2023, 13, 1947. [Google Scholar] [CrossRef]
- Russell, B.C.; Torralba, A.; Murphy, K.P.; Freeman, W.T. LabelMe: A database and web-based tool for image annotation. Int. J. Comput. Vis. 2008, 77, 157–173. [Google Scholar] [CrossRef]
- Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, Netherlands, 1995; pp. 1–52. [Google Scholar]
- Bradski, G. The openCV library. Dr. Dobbs. J. 2000, 25, 120–123. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Xie, G.; Lu, W. Image edge detection based on opencv. Int. J. Electr. Comput. Eng. 2013, 1, 104–106. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Frame, M. Fractals. In Hasard et Finances, 1st ed.; Flammarion: Paris, France, 1997. [Google Scholar]
- Takayasu, H. Fractals in the Physical Sciences; Manchester University Press: Manchester, UK, 1990. [Google Scholar]
- Lovejoy, S. Area-perimeter relation for rain and cloud areas. Science 1982, 216, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Lung, C.W.; Mu, Z.Q. Fractal dimension measured with perimeter-area relation and toughness of materials. Phys. Rev. B 1988, 38, 11781. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, E.M.; Zimmerman, R.W.; Witherspoon, P.A.; Cook, N.G.W. The fractal dimension of pores in sedimentary rocks and its influence on permeability. Eng. Geol. 1997, 48, 199–215. [Google Scholar] [CrossRef]
- Salat, H.; Murcio, R.; Arcaute, E. Multifractal methodology. Physica. A 2017, 473, 467–487. [Google Scholar] [CrossRef]
- Halsey, T.C.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.; Shraiman, B.I. Fractal measures and their singularities: The characterization of strange sets. Phys. Rev. A 1986, 33, 1141. [Google Scholar] [CrossRef]
- Agterberg, F.P.; Cheng, Q.; Brown, A.; Good, D. Multifractal modeling of fractures in the Lac du Bonnet batholith, Manitoba. Comput. Geosci. 1996, 22, 497–507. [Google Scholar] [CrossRef]
- Cheng, Q. Multifractal modeling and lacunarity analysis. Math. Geol. 1997, 29, 919–932. [Google Scholar] [CrossRef]
- Chhabra, A.B.; Meneveau, C.; Jensen, R.V.; Sreenivasan, K. Direct determination of the f (α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 1989, 40, 5284. [Google Scholar] [CrossRef] [PubMed]
- Atmanspacher, H.; Scheingraber, H.; Wiedenmann, G. Determination of f (α) for a limited random point set. Phys. Rev. A 1989, 40, 3954. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, E.V.; Ferreiro, J.P.; Miranda, J.; González, A.P. Multifractal analysis of pore size distributions as affected by simulated rainfall. Vadose Zone J. 2008, 7, 500–511. [Google Scholar] [CrossRef]
- Kropp, J.; Block, A.; von Bloh, W.; Klenke, T.; Schellnhuber, H. Multifractal characterization of microbially induced magnesian calcite formation in Recent tidal flat sediments. Sediment. Geol. 1997, 109, 37–51. [Google Scholar] [CrossRef]
- Hentschel, H.G.E.; Procaccia, I. The infinite number of generalized dimensions of fractals and strange attractors. Phys. D 1983, 8, 435–444. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Li, J.; Zahid, M.A. Pore structure characterization and classification using multifractal theory—An application in Santanghu basin of western China. J. Petrol. Sci. Eng. 2015, 127, 297–304. [Google Scholar] [CrossRef]
- Osco, L.P.; Wu, Q.; de Lemos, E.L.; Gonçalves, W.N.; Ramos, A.P.M.; Li, J.; Junior, J.M. The segment anything model (sam) for remote sensing applications: From zero to one shot. Int. J. Appl. Earth Obs. 2023, 124, 103540. [Google Scholar] [CrossRef]
- Han, S.; Löhr, S.C.; Abbott, A.N.; Baldermann, A.; Farkaš, J.; McMahon, W.; Milliken, K.L.; Rafiei, M.; Wheeler, C.; Owen, M. Earth system science applications of next-generation SEM-EDS automated mineral mapping. Front. Earth Sci. 2022, 10, 956912. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, H.; Ren, W.; Zhao, B. Multi-fractal characteristics of joint geometric distribution of granite in Beishan. Rock Soil Mech. 2016, 37, 2937–2944. [Google Scholar]
- Zhou, Z.; Zhang, S.; Gao, Z.; Cai, X.; Li, H. Multifractal characterization of gangue particle size distribution structure during ball milling process. Powder Technol. 2022, 412, 117970. [Google Scholar] [CrossRef]
- Izadi, H.; Sadri, J.; Bayati, M. An intelligent system for mineral identification in thin sections based on a cascade approach. Comput. Geosci.-UK 2017, 99, 37–49. [Google Scholar] [CrossRef]
- Lou, W.; Zhang, D.; Bayless, R.C. Review of mineral recognition and its future. Appl. Geochem. 2020, 122, 104727. [Google Scholar] [CrossRef]
- Gao, Q.; Long, T.; Zhou, Z. Mineral identification based on natural feature-oriented image processing and multi-label image classification. Expert Syst. Appl. 2024, 238, 122111. [Google Scholar] [CrossRef]
- Gulbin, Y.; Evangulova, E. Morphometry of quartz aggregates in granites: Fractal images referring to nucleation and growth processes. Math. Geol. 2003, 35, 819–833. [Google Scholar] [CrossRef]
- Fowler, A.D. Self-organized mineral textures of igneous rocks: The fractal approach. Earth-Sci. Rev. 1990, 29, 47–55. [Google Scholar] [CrossRef]
- Xie, Y.; Tan, K.; Wang, Z.; Hu, K. An Numerical Approach for the Dynamic Model of Fractal Growth of Minerals. J. U. Souty Chin. 2011, 25, 33–36, (In Chinese with English abstract). [Google Scholar]
- Witten, T.A., Jr.; Sander, L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 1981, 47, 1400. [Google Scholar] [CrossRef]
- Tokuyama, M.; Kawasaki, K. Fractal dimensions for diffusion-limited aggregation. Phys. Lett. A 1984, 100, 337–340. [Google Scholar] [CrossRef]
- Schwartz, M. Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids—Examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Miner. Depos. 1992, 27, 101–108. [Google Scholar] [CrossRef]
- Abuamarah, B.A.; Azer, M.K.; Asimow, P.D.; Shi, Q. Petrogenesis of the post-collisional rare-metal-bearing Ad-Dayheen granite intrusion, Central Arabian Shield. Lithos 2021, 384, 105956. [Google Scholar] [CrossRef]
- Moussa, H.E.; Asimow, P.D.; Azer, M.K.; Abou El Maaty, M.A.; Akarish, A.I.; Yanni, N.N.; Mubarak, H.S.; Wilner, M.; Elsagheer, M.A. Magmatic and hydrothermal evolution of highly-fractionated rare-metal granites at Gabal Nuweibi, Eastern Desert, Egypt. Lithos 2021, 400, 106405. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Azer, M.K.; Al-Hashim, M.H.; Heikal, M.T.S. Highly evolved rare-metal bearing granite overprinted by alkali metasomatism in the Arabian Shield: A case study from the Jabal Tawlah granites. J. Afr. Earth Sci. 2022, 192, 104556. [Google Scholar] [CrossRef]
- Sami, M.; El Monsef, M.A.; Abart, R.; Toksoy-Köksal, F.; Abdelfadil, K.M. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr–Nd Isotope Systematics, and Mineral Chemistry. ACS Earth Space Chem. 2022, 6, 2368–2384. [Google Scholar] [CrossRef]
- Wang, C. A Discussion on Genesis of the 414 Deposit. Miner. Depos. 1986, 2, 85–96. (In Chinese) [Google Scholar]
- Rong, J.; Wang, F. Metasomatic Textures in Granites: Evidence from Petrographic Observation; Springer: Singapore, 2016; pp. 69–98. [Google Scholar]
Type | Manual Annotation | Direct Binarization | Automatic Annotation | ||
---|---|---|---|---|---|
Db | Db | Error of Db | Db | Error of Db | |
Quartz in hand specimen | 1.8584 | 1.8885 | 1.62% | 1.7522 | 5.71% |
Albite in hand specimen | 1.6439 | 1.8755 | 1.41% | 1.5305 | 6.90% |
Quartz in thin section | 1.8616 | 1.8452 | 0.88% | 1.8508 | 0.58% |
Albite in thin section | 1.6889 | 1.7335 | 2.64% | 1.6786 | 0.61% |
Type | Sample ID | Db | DPA | Δα | Δf(α) | D1 | D2 | |
---|---|---|---|---|---|---|---|---|
Quartz | YC-1 | 1.8200 | 1.4669 | 3.6286 | −1.8697 | 2.2145 | 2.1590 | |
YC-2 | 1.8574 | 1.2687 | 4.0856 | −1.9460 | 2.1887 | 2.1429 | ||
YC-3 | 1.8508 | 1.3864 | 3.8167 | −1.8730 | 2.2424 | 2.1868 | ||
YC-4 | 1.8185 | 1.3047 | 4.3445 | −1.8898 | 2.1370 | 2.0755 | ||
YC-5 | 1.7802 | 1.2175 | 3.0268 | −1.5048 | 2.2179 | 2.1514 | ||
Average | 1.8254 | 1.3288 | 3.7804 | −1.8167 | 2.2001 | 2.1431 | ||
Lepidolite | YC-6 | 1.8282 | 1.2519 | 4.9942 | −2.0312 | 2.1434 | 2.0944 | |
YC-7 | 1.8103 | 1.2279 | 2.7845 | −1.6092 | 2.0748 | 2.0339 | ||
YC-8 | 1.7036 | 1.1859 | 4.5831 | −1.4189 | 1.9764 | 1.8883 | ||
YC-9 | 1.8171 | 1.2250 | 3.9381 | −1.8866 | 2.1777 | 2.1198 | ||
YC-10 | 1.7925 | 1.2588 | 4.1050 | −1.8987 | 1.9925 | 1.9438 | ||
Average | 1.7903 | 1.2299 | 4.0810 | −1.7689 | 2.0730 | 2.0160 | ||
Albite | Regular albite | YC-11 | 1.6786 | 1.1272 | 3.9592 | −0.6902 | 2.1336 | 1.9467 |
YC-12 | 1.7081 | 1.1420 | 2.7851 | −1.0666 | 2.1837 | 2.0538 | ||
YC-13 | 1.7582 | 1.1525 | 2.6094 | −1.2967 | 2.1727 | 2.0609 | ||
YC-14 | 1.6186 | 1.0885 | 3.1784 | −0.5825 | 1.8114 | 1.7302 | ||
YC-15 | 1.6421 | 1.1908 | 4.7901 | −1.3589 | 1.8019 | 1.7415 | ||
Average | 1.6811 | 1.1402 | 3.4644 | −0.9990 | 2.0207 | 1.9066 | ||
Semi-snowball-textured albite | YC-26 | 1.5010 | 1.1056 | 3.0812 | −0.7106 | 1.5031 | 1.4325 | |
YC-27 | 1.4350 | 1.1514 | 3.9009 | −0.7469 | 1.6429 | 1.4895 | ||
Average | 1.4680 | 1.1285 | 3.4910 | −0.7288 | 1.5730 | 1.4610 | ||
Snowball-textured albite | YC-16 | 1.6435 | 1.1772 | 2.7874 | −0.8400 | 2.1933 | 2.0679 | |
YC-17 | 1.6210 | 1.2128 | 3.6872 | −1.5564 | 2.1624 | 2.0762 | ||
YC-18 | 1.6648 | 1.1684 | 3.5903 | −0.6507 | 2.2799 | 2.1949 | ||
YC-19 | 1.5735 | 1.2008 | 3.0605 | −1.3445 | 2.2126 | 2.1110 | ||
YC-20 | 1.5700 | 1.2208 | 2.9349 | −1.3785 | 2.2424 | 2.1424 | ||
YC-21 | 1.6491 | 1.2582 | 3.4213 | −1.0524 | 2.1445 | 2.0488 | ||
YC-22 | 1.6269 | 1.1812 | 2.2822 | −0.9818 | 2.2500 | 2.1664 | ||
YC-23 | 1.6328 | 1.2071 | 3.3678 | −0.9127 | 2.2508 | 2.1638 | ||
Average | 1.6227 | 1.2033 | 3.1415 | −1.0896 | 2.2170 | 2.1214 | ||
Outer albite crystal | YC-21 | 1.7305 | 1.2789 | 3.1526 | −1.3348 | 1.8325 | 1.7693 | |
YC-25 | 1.7186 | 1.2486 | 2.7577 | −1.4705 | 1.8181 | 1.7745 | ||
YC-27 | 1.7772 | 1.2159 | 3.9384 | −1.3343 | 1.9612 | 1.8913 | ||
Average | 1.7421 | 1.2478 | 3.2829 | −1.3799 | 1.8706 | 1.8117 |
Zoning | Sample ID | Db | Δα | Δf(α) | D1 | D2 |
---|---|---|---|---|---|---|
Inner zone | YC-21 | 1.3168 | 2.0766 | −0.5948 | 1.1512 | 1.0712 |
YC-22 | 1.3259 | 3.2804 | −0.4891 | 1.2138 | 1.1212 | |
YC-23 | 1.4291 | 2.7697 | −0.8997 | 1.3692 | 1.2596 | |
YC-24 | 1.3202 | 1.5866 | −0.2938 | 0.9795 | 0.8920 | |
YC-25 | 1.3601 | 3.3444 | −0.2003 | 1.2696 | 1.1309 | |
YC-26 | 1.2109 | 1.6502 | −0.3798 | 0.7395 | 0.7140 | |
YC-27 | 1.2721 | 3.1262 | −0.3271 | 0.7104 | 0.6259 | |
Average | 1.3193 | 2.5477 | −0.4549 | 1.0619 | 0.9736 | |
Middle zone | YC-21 | 1.4161 | 3.2073 | −0.7647 | 1.4904 | 1.3914 |
YC-22 | 1.4417 | 3.3638 | −1.0268 | 1.6271 | 1.5178 | |
YC-23 | 1.4138 | 3.1278 | −0.8177 | 1.6782 | 1.5823 | |
YC-24 | 1.4799 | 2.7211 | −0.4022 | 1.4465 | 1.3136 | |
YC-25 | 1.4252 | 2.9262 | −0.4841 | 1.5103 | 1.4107 | |
YC-26 | 1.3576 | 2.4595 | −0.5084 | 1.0671 | 1.0271 | |
YC-27 | 1.2612 | 3.7482 | −0.4169 | 1.0755 | 0.9600 | |
Average | 1.3994 | 3.0791 | −0.6316 | 1.4136 | 1.3147 | |
Outer zone | YC-21 | 1.5966 | 4.0408 | −0.9953 | 1.8990 | 1.7912 |
YC-22 | 1.5581 | 2.9119 | −0.6970 | 1.9871 | 1.8856 | |
YC-23 | 1.5521 | 3.9871 | −0.9293 | 1.9166 | 1.8190 | |
YC-24 | 1.5405 | 4.8781 | −0.4483 | 1.6594 | 1.4951 | |
YC-25 | 1.5045 | 4.1987 | −1.1991 | 1.7692 | 1.6764 | |
YC-26 | 1.3969 | 4.3164 | −0.9015 | 1.3166 | 1.2190 | |
YC-27 | 1.3304 | 3.3981 | 0.0256 | 1.3237 | 1.0867 | |
Average | 1.4970 | 3.9616 | −0.7350 | 1.6959 | 1.5676 | |
Outer albite crystal | YC-21 | 1.7305 | 3.1526 | −1.3348 | 1.8325 | 1.7693 |
YC-25 | 1.7186 | 2.7577 | −1.4705 | 1.8181 | 1.7745 | |
YC-27 | 1.7772 | 3.9384 | −1.3343 | 1.9612 | 1.8913 | |
Average | 1.7421 | 3.2829 | −1.3799 | 1.8706 | 1.8117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, T.; Wu, K.; Zhang, H.; Zhang, J.; Jiang, X.; Lin, Q.; Feng, M. Fractal-Based Pattern Quantification of Mineral Grains: A Case Study of Yichun Rare-Metal Granite. Fractal Fract. 2024, 8, 49. https://doi.org/10.3390/fractalfract8010049
Liu Y, Sun T, Wu K, Zhang H, Zhang J, Jiang X, Lin Q, Feng M. Fractal-Based Pattern Quantification of Mineral Grains: A Case Study of Yichun Rare-Metal Granite. Fractal and Fractional. 2024; 8(1):49. https://doi.org/10.3390/fractalfract8010049
Chicago/Turabian StyleLiu, Yue, Tao Sun, Kaixing Wu, Hongwei Zhang, Jingwei Zhang, Xinwen Jiang, Quanwei Lin, and Mei Feng. 2024. "Fractal-Based Pattern Quantification of Mineral Grains: A Case Study of Yichun Rare-Metal Granite" Fractal and Fractional 8, no. 1: 49. https://doi.org/10.3390/fractalfract8010049
APA StyleLiu, Y., Sun, T., Wu, K., Zhang, H., Zhang, J., Jiang, X., Lin, Q., & Feng, M. (2024). Fractal-Based Pattern Quantification of Mineral Grains: A Case Study of Yichun Rare-Metal Granite. Fractal and Fractional, 8(1), 49. https://doi.org/10.3390/fractalfract8010049