Fractal Calculus Facilitates Rethinking ‘Hard Problems’: A New Research Paradigm
Abstract
:1. Introduction
1.1. Fractal-Paradigm and the Fractal-Order Calculus
Basic Research Paradigm
1.2. Brief History of HRV as a ‘Hard Problem’
1.3. Outline of Modeling Synthesis Using 4 Models
2. Empirical Lévy Statistics for HRV: FOCM-0
3. Theoretical Lévy Statistics for HRV: FOCM-1
FOCM-0 and FOCM-1 Are Both Unacceptable
4. Tempered Fluctuations: FOCM-2
Why Is FOCM-2 Unacceptable?
5. HRV Control Hypothesis: FOCM-3
Why Is FOCM-3 Acceptable?
6. Discussion and Conclusions
FOCM-0 verified the processing of the empirical HRV time series for the healthy state of the variability of the heartbeat intervals as a Lévy PDF, but ultimately, it is unsatisfactory because the Lévy PDF has an unphysiologic divergence of the second moment. The FOCM-0 is too simple.
FOCM-1 was designed to provide a formal mathematical description of the Lévy PDF empirically observed by [34] in FOCM-0. The natural calculus to obtain this PDF is the FOC but the FOFPE given in Equation (4) requires additional modifications to incorporate the tempering mechanism in the dynamics and thereby avoid the second-moment divergence.
FOMC-2 uses the infinite divisibility of the PDF to obtain Equation (6), which has an elegant tempered Lévy PDF solution. However, it does not realize the proper control mechanism to suppress the heart rate at the extremes and instead suppresses the extreme fluctuations themselves before they can disrupt the HRV time series.
FOCM-3 solved this remaining problem by introducing a nonlinear negative feedback mechanism that is self-regulating and is asymptotically consistent with the hypothesis that “disease is the loss of complexity”, made by [36].
7. Methods
7.1. On Crucial Events (CEs)
7.2. Scaling Solution to Fractal-Order Kinetic Equation
Steady-State Solution
7.3. Diffusion Entropy Analysis (DEA)
- (1).
- The raw data of each channel are projected onto the interval [0,1] by normalizing each time series by the total time interval of the dataset, thereby enabling the processing of each time series to be directly compared.
- (2).
- Divide the normalized data profile into parallel stripes of the size of 0.01 (panel a, ECG data).
- (3).
- Extract events by defining them as unit amplitude pulses if the signal at that time is in a different stripe with respect to its previous value (panel b) and zero if it remains in the same stripe.
- (4).
- Create a diffusion trajectory (panel c) using the time series of the extracted events from step 3.
- (5).
- Determine the statistics of a single diffusion trajectory by selecting a window size w and partitioning the diffusion trajectory into many pieces, each starting from an event.
- (6).
- Initiating all the trajectories from an event enables their being shifted to start from a common origin (panel d).
- (7).
- Finally, we evaluate the ensemble distribution of histograms at a given time (panel (e)) since the events are statistically independent.
7.4. Non-Gaussian Index
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AMI | acute myocardium infarction |
ANS | autonomous nervous sysyem |
CE | crucial event |
CETS | CE time series |
FOC | fractal-order calculus |
FOCDM | FOC dynamic model |
FOCM | FOC model |
FOCM-0 | empirical Lévy model |
FOCM-1 | theoretical Lévy model |
FOCM-2 | tempered (reduced) Lévy model |
FOCM-3 | hypothetical deterministic force balances IPL fluctuations in FOKE |
FOCSNDM | FOC stochastic nonlinear DM |
FOD | fractal-order derivative |
FODE | fractal-order diffusion equation |
FOKE | fractal-order kinetic equation |
FOFPE | fractal-order Fokker–Planck equation |
FOLLE | fractal-order linear Langevin equation |
FONLE | fractal-order nonlinear Langevin equation |
HRV | heart rate variability |
IOC | integer-order calculus |
IODE | integer-order di¤erential equation |
IPL | inverse power law |
MFD | multifractal dimension |
NoONs | network-of-organ-networks |
ON | organ-network |
probability density function | |
PSD | power spectral density is the square of the Fourier transform of a dynamic variable |
RETS | renwal event time series |
References
- Weibel, E.R. Fractal geometry: A design principle for living organisms. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1991, 261, L361–L369. [Google Scholar] [CrossRef] [PubMed]
- Weibel, E.R. Symmorphosis: On Form and Function in Shaping Life; Harvard University Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Nonnenmacher, T.F.; Losa, S.A.; Weibel, E.R. (Eds.) Factals in Biology and Medicine: Volume I; Birkhäuser: Boston, MA, USA, 1993. [Google Scholar]
- Losa, S.A.; Merlini, D.; Nonnenmacher, T.F.; Weibel, E.R. (Eds.) Factals in Biology and Medicine: Volume II; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Losa, S.A.; Merlini, D.; Nonnenmacher, T.F.; Weibel, E.R. (Eds.) Factals in Biology and Medicine: Volume III; Birkhäuser: Boston, MA, USA, 2002. [Google Scholar]
- Losa, S.A.; Merlini, D.; Nonnenmacher, T.F.; Weibel, E.R. (Eds.) Factals in Biology and Medicine: Volume IV; Birkhäuser: Boston, MA, USA, 2005. [Google Scholar]
- Bohara, G.; Lambert, D.; West, B.J.; Grigolini, P. Crucial events, randomness, and multifractality. Phys. Rev. E 2017, 96, 062216. [Google Scholar] [CrossRef] [PubMed]
- Correll, J. 1/f-noise and effort on implicit measures of bias. J. Pers. Soc. Psych. 2008, 94, 48. [Google Scholar] [CrossRef] [PubMed]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of 1/f noise. Phys. Rev. Lett. 1987, 59, 381. [Google Scholar] [CrossRef]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Mandelbrot, B.B. 1/f Noises and the Infrared Catastrophe; World Scientific Publishing Co.: Boulder, CO, USA, 1965. [Google Scholar]
- West, B.J.; Grigolini, P. Crucial Events: Why Are Catastrophies Never Expected? World Scientific: Singapore, 2021. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1966; Volume II. [Google Scholar]
- Feller, W. Fluctuation theory of recurrent events. Trans. Am. Math. Soc. 1949, 67, 98. [Google Scholar] [CrossRef]
- Sachev, A.I.; Zaslavsky, G.M. Fractiomal kinetic equation: Solutions and applications. Chaos 1997, 7, 753–764. [Google Scholar] [CrossRef]
- Sokolov, I.M.; Blumen, A.; Klafter, J. Linear response in complex systems: CTRW and the fractional Fokker–Planck equations. Phys. A 2021, 302, 268. [Google Scholar] [CrossRef]
- Zaslavsky, G.M. Chaos, fractional kinetics, and anomalus transport. Phys. Rep. 2002, 371, 461. [Google Scholar] [CrossRef]
- West, B.J. Fractional Calculus View of Complexity: Tomorrow’s Science; See Section 7.6.1 Truncated Lévy Process; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Montroll, E.W.; Weiss, G. Random Walks on Lattices. II. J. Math. Phys. 1965, 6, 167–181. [Google Scholar] [CrossRef]
- Crowe, S.; Cresswell, K.; Robertson, A.; Huby, G.; Avery, A.; Sheikh, A. The case study approach. BMC Med. Res. Methodol. 2011, 11, 100. [Google Scholar] [CrossRef]
- Rahman, M. Navigating the landscape of research paradigms: An overview and critique. Inter. J. Ed. Stud. 2023, 6, 1–18. [Google Scholar] [CrossRef]
- Hayano, J.; Kiyono, K.; Struzik, Z.R.; Yamamoto, Y.; Watanabe, E.; Stein, P.K.; Watkins, L.L.; Blumenthal, J.A.; Carney, R.M. Increased non-Gaussianity of heart rate variability predicts cardiac mortality after an acute myocardial infraction. Front. Physiol. 2011, 2, 65. [Google Scholar] [CrossRef]
- Stake, R.E. The Art of Case Study Research; Sage Publications Ltd.: London, UK, 1995. [Google Scholar]
- Ivanov, P.C.; Liu, K.K.; Bartsch, R.P. Focus on the emerging new fields of network physiology and network medicine. New J. Phys. 2016, 18, 100201. [Google Scholar] [CrossRef] [PubMed]
- Valdez, L.D.; Muro, M.A.D.; Braunstein, L.A. Castcading Failures in Complex Networks. J. Complex Netw. 2020, 8, cnaa013. [Google Scholar] [CrossRef]
- Smolyak, A.; Levy, O.; Vodenska, I.; Buldyrev, S.; Havlin, S. Mitigation of cascading failures in complex networks. Sci. Rep./Natureresearch 2020, 10, 16124. [Google Scholar] [CrossRef]
- Billman, G.E. Heart rate variability—A historical perspective. Front. Physiol.Clin. Trans. Physiol. 2011, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Goldberger, A.L. Giles, F. Filley lecture. Complex systems. Proc. Am. Thorac. Soc. 2006, 3, 467–471. [Google Scholar] [CrossRef]
- Iyengar, N.; Peng, C.K.; Morin, R.; Goldberger, A.L.; Lipsitz, L.A. Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 271, R1078–R1084. [Google Scholar] [CrossRef]
- Kleiger, R.; Miller, J.P.; Bigger, J.T.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Huikuri, H. Heart rate variability in coronary artery disease. J. Intern. Med. 1995, 237, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Guzzetti, S.; Mezzwtti, S.; Magaetti, R.; Port, A.; De Angelis, G.; Rovelli, G.; Malliani, A. Linear and non-linear 24 h heart rate variability in chronic heart failure. Auton. Neurosci. 2000, 86, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.-K.; Mietus, J.E.; Hausdorff, J.M.; Havlin, S.; Stanley, H.E.; Goldberger, A. Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 1993, 70, 1343–1346. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Verheyden, B.; Aubert, A.E. Aging and nonlinear heart rate control in a healthy population. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2560–H2570. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; West, B.J. Fractals: A contemporary mathematical concept with applications to physiology and medicine. Yale J. Biol. Med. 1987, 60, 104–119. [Google Scholar]
- Chalmers, D. The Conscious Mind; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- West, B.J.; Mahmoodi, K.; Grigolini, P. Empirical Paradox, Complexity Thinking and Generating New Kinds of Knowledge; Cambridge Scholars Publishing: Cambridge, UK, 2019. [Google Scholar]
- West, B.J.; Seshadri, V. Linear systems with Lévy fluctuations. Phys. A 1982, 113, 203–216. [Google Scholar] [CrossRef]
- West, B.J.; Turalska, M. Hypothetical control of heart rate variability. Front. Physiogy Fractal Physiol. 2019, 10, 1078. [Google Scholar] [CrossRef]
- West, B.J. Fractal Physiology and Chaos in Medicine; World Scientific: Hackensack, NJ, USA, 2013. [Google Scholar]
- Castaing, B.; Gagne, Y.; Hopfinger, E.J. Velocity probability density functions of high Reynolds-number turbulence. Phys. D 1990, 46, 177–200. [Google Scholar] [CrossRef]
- Kiyono, K.; Struzik, Z.R.; Aoyagi, N.; Yamamoto, Y. Multiscale probability density function analysis: Non-Gaussian and scale-invariant fluctuations of healthy human heart rate. IEEE Trans. Biomed. Eng. 2006, 53, 95–102. [Google Scholar] [CrossRef]
- Hall, H. Guyton and Hall Textbook of Medical Physiology, 13th ed.; Elsevier: Philadelphia, PA, USA, 2016. [Google Scholar]
- Goldberger, A.; Rigney, D.R.; West, B.J. Chaos and fractals in human physiology. Sci. Am. 1990, 262, 42–49. [Google Scholar] [CrossRef]
- Yaniv, Y.; Lyashkov, A.E.; Lakatta, E.G. The fractal-like complexity of heart rate variability beyond neurotranmitters and autonomic receptors: Signaling.intrinsic to sinoatrial node pacemaker cells. Cardiovasc. Pharmacol. Open Access 2013, 2, 111. [Google Scholar] [CrossRef] [PubMed]
- Reichl, L.E. The Transition to Chaos; Springer: New York, NY, USA, 1992. [Google Scholar]
- Neubauer, B.; Gundersen, H.J.G. Analysis of heart rate variations in patients with multiple sclerosis. A simple measure of autonomic disturbances using an ordinary ECG. J. Neurol. Neuosug. Psychiatry 1978, 41, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Kariniemi, V.; Ammälä, P. Short-term variability of fetal heart rate during pregnancies with normal and insufficient placental function. Am. J. Obster. Gynecol. 1981, 139, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.; Goldwater, D.; Bhargava, V. Atrophine unmasks bed-rest deconditioning effect in healthy men: A spectral analysis of cardiac interbeat intervals. J. Appl. Physiol. 1986, 61, 1843–1848. [Google Scholar] [CrossRef]
- Waddington, J.L.; MacCulloch, M.J.; Sambrooks, J.E. Resting heartrate variability in man declines with age. Experientia 1979, 35, 1197–1198. [Google Scholar] [CrossRef]
- Goldberger, A.; Findley, L.; Blackburn, M.; Mandell, A. Nonliear dynamics of heart failure: Implications of long-wavelength cardiopulmonary osciallations. Am. Heart J. 1984, 107, 612–615. [Google Scholar] [CrossRef]
- Myers, G.A.; Martin, G.J.; Magid, N.M.; Barnett, P.S.; Schaad, J.W.; Weiss, J.S. Power spectral analysis of heart rate variability in sudden cardiac death: Comparison to other methods. IEEE Trans. Biomed. Eng. 1986, 33, 1149–1156. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Bhargava, V.; West, B.J.; Mandell, A.J. On a mechanism of cardiac electrical stability: The fractal hypothesis. Biophys. J. 1985, 48, 525–528. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Gonchar, V.Y.; Klafter, Y.; Metzler, R. Natural cutoff in Lévy flights caused by dissipative nonlinearity. Phys. Rev. E 2005, 72, 010101. [Google Scholar] [CrossRef]
- MacKay, N.M. Non-equilibrium Noise in V-shaped, Linear Well Profiles. arXiv 2024, arXiv:2406.16117v1. [Google Scholar]
- Kiyono, K.; Struzik, Z.R.; Aoyagi, N.; Sakata, S.; Hayano, J.; Yamamoto, Y. Critical scale invariance in a healthy human heart raté. Phys. Rev. Lett. 2004, 93, 178103. [Google Scholar] [CrossRef] [PubMed]
- West, B.J.; Trualska, M.; Grigolini, P. Networks of Echoes: Imitation, Innovation and Invisible Leaders; Springer: New York, NY, USA, 2013. [Google Scholar]
- West, B.J.; Grigolini, P.; Kerick, S.E.; Franaszczuk, P.J.; Mahmoodi, K. Complexity Synchronization of Organ Networks. Entropy 2023, 25, 1393–1412. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, K.; Kerick, S.E.; Grigolini, P.; Franaszczuk, P.J.; West, B.J. Complexity synchronization: A measure of interaction between the brain, heart and lungs. Sci. Rep. 2023, 13, 11433. [Google Scholar] [CrossRef]
- Mahmoodi, K.; Kerick, S.E.; Grigolini, P.; Franaszczuk, P.J.; West, B.J. Temporal complexity measure of reaction time series: Operational versus event time. Brain Behav. 2023, 13, e3069. [Google Scholar] [CrossRef]
- West, B.J.; Bologna, M.; Grigolini, P. Crucial Event Rehabiliation Therapy: Multifractal Medicine; Springer International Pub.: Cham, Switzerland, 2023. [Google Scholar]
- Feder, F.J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef]
- Amaral, L.A.N.; Ivanov, P.C.; Aoyagi, N.; Hidaka, I.; Tomono, S.; Goldberger, A.L.; Stanley, H.E.; Yamamoto, Y. Behavioral-independent features of complex heartbeat dynamics. Phys. Rev. Lett. 2001, 86, 6026–6029. [Google Scholar] [CrossRef]
- Stein, P.K.; Domitrovich, P.P.; Hui, N.; Rautaharju, P.; Gottdiener, J. Sometimes higher heart rate variability is not better heart rate variability: Results of graphical and nonlinear analyses. J. Cardiovasc. Electrophysiol. 2005, 16, 954–959. [Google Scholar] [CrossRef]
- Struzik, Z.R.; Kiyono, K.; Hayano, J.; Watanabe, E.; Yamamoto, Y. Increased heteroscedasticity of heart rate in fatal heart failure. Europhys. Lett. 2008, 82, 28005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
West, B.J. Fractal Calculus Facilitates Rethinking ‘Hard Problems’: A New Research Paradigm. Fractal Fract. 2024, 8, 620. https://doi.org/10.3390/fractalfract8110620
West BJ. Fractal Calculus Facilitates Rethinking ‘Hard Problems’: A New Research Paradigm. Fractal and Fractional. 2024; 8(11):620. https://doi.org/10.3390/fractalfract8110620
Chicago/Turabian StyleWest, Bruce J. 2024. "Fractal Calculus Facilitates Rethinking ‘Hard Problems’: A New Research Paradigm" Fractal and Fractional 8, no. 11: 620. https://doi.org/10.3390/fractalfract8110620
APA StyleWest, B. J. (2024). Fractal Calculus Facilitates Rethinking ‘Hard Problems’: A New Research Paradigm. Fractal and Fractional, 8(11), 620. https://doi.org/10.3390/fractalfract8110620