Estimation of Fractal Dimension and Detection of Fake Finger-Vein Images for Finger-Vein Recognition
Abstract
:1. Introduction
- -
- To resolve the issue of the generation of less elaborate fake finger-vein images by the existing methods, our study introduces a novel method for generating elaborate fake finger-vein images that can attack conventional finger-vein-recognition systems. We propose the densely updated contrastive learning-based self-attention generative adversarial network (DCS-GAN);
- -
- The DCS-GAN is trained using the adaptive moment estimation (Adam) optimizer with sharpness-aware minimization (SAM) to improve the model’s generalization. This allows for the creation of high-quality fake images. Furthermore, by updating the loss through a comparison of generated images and real images using a DenseNet-161 that is pre-trained on finger-vein data, the model can create fake images with a distribution similar to the original ones. Additionally, the inclusion of a self-attention layer in the generator emphasizes the finger-vein patterns, enhancing the quality of the generated images;
- -
- The performance of spoof detection is improved by an enhanced convolutional network for a next-dimension (ConvNeXt) with a large kernel attention (LKA). This not only takes into account the adaptability in the spatial dimension, inherent to traditional self-attention, but also considers adaptability in the channel dimension, thereby computing long-range correlations and improving spoof detection;
- -
- To improve the spoof detection performance of the proposed method, we introduce fractal dimension estimation to analyze the complexity and irregularity of class activation maps from real and fake finger-vein images, enabling the generation of more realistic and sophisticated fake finger-vein images. In addition, we freely share our DCS-GAN, enhanced ConvNeXt, algorithm codes, and generated fake finger-vein images through [4], so that researchers can utilize them for further study and ensure fair evaluations.
2. Related Work
2.1. Spoof Attack
2.1.1. Using Fake Fabricated Artifacts
2.1.2. Using Fake Generated Images
2.2. Spoof Detection
2.2.1. Machine Learning-Based Methods
2.2.2. Deep Learning-Based Methods
3. Proposed Method
3.1. Flow Diagram of the Proposed Method
3.2. The Preprocessing of the Finger-Vein Images
3.3. Spoof Attack Procedure
3.3.1. Generation of Fake Finger-Vein Image Using DCS-GAN
3.3.2. The Post-Processing Stage for the Generation of Fake Finger-Vein Images
3.4. Spoof Detection Procedure
Spoof Detection of Fake-Vein Image by Enhanced ConvNeXt
3.5. Fractal Dimension Estimation
Algorithm 1 Pseudocode for Fractal Dimension (FD) Estimation |
Input: BCAM: Binary class activation map extracted from DSC-GAN’s encoder Output: FD: Fractal dimension 1: Find the largest dimension of the box size and adjust it to the nearest power of 2 Max_dimension = max(size(BCAM)) δ = 2^[log2(Max_dimension)] 2: If the size is smaller than δ, pad the image to match δ‘s dimension if size(BCAM) < size(δ) Pad_width = ((0, δ − BCAM.shape [0]), (0, δ − BCAM.shape [1])) Pad_ BCAM= pad(BCAM, Pad_width, mode = ‘constant’, constant_values = 0) else Pad_ BCAM = BCAM 3: Initialize an array to store the number of boxes corresponding to each dimension size n = zeros(1, δ + 1) 4: Compute the number of boxes, C(δ) containing at least one pixel of the positive region n[δ + 1] = sum(BCAM[:]) 5: While δ > 1: a. Divide the size of δ by 2 b. Reassign the number of boxes C(δ) 6: Compute the log(C(δ)) and log(δ) for each δ 7: Fit a line to the points [(log(δ), log(C(δ))] using the least squares method 8: The fractal dimension (FD) is found by the slope of the fitted line Return FD |
4. Experimental Results
4.1. Experimental Database and Setups
4.2. Training of the Proposed Networks
4.2.1. Training of DCS-GAN for Spoof Attack
4.2.2. Training of Enhanced ConvNeXt-Small for Spoof Detection
4.3. Testing of Proposed Model
4.3.1. Evaluation Metrics
4.3.2. Performance Test of the Spoof Attack
4.3.2.1. Ablation Studies
4.3.2.2. Comparing Image Quality by the Proposed and SOTA Approaches
4.3.2.3. FD Estimation for Evaluating Generated Image Quality by the Proposed Method
4.3.3. Performance Test of Spoof Detection
4.3.3.1. Ablation Study
4.3.3.2. Comparisons of Spoof Detection Accuracies by Proposed and SOTA Methods
4.3.3.3. Comparisons of Algorithm Complexity
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nguyen, D.T.; Yoon, H.S.; Pham, T.D.; Park, K.R. Spoof detection for finger-vein recognition system using NIR camera. Sensors 2017, 17, 2261. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.C.; Tolosana, R.; Vera-Rodriguez, R.; Lopes, V.; Proença, H.; Fierrez, J. GANprintR: Improved fakes and evaluation of the state of the art in face manipulation detection. IEEE J. Sel. Top. Signal Process. 2020, 14, 1038–1048. [Google Scholar] [CrossRef]
- Kim, S.G.; Choi, J.; Hong, J.S.; Park, K.R. Spoof detection based on score fusion using ensemble networks robust against adversarial attacks of fake finger-vein images. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9343–9362. [Google Scholar] [CrossRef]
- DCS-GAN. Available online: https://github.com/SeungguKim98/Finger-Vein-Spoof-Attack-Detection (accessed on 26 July 2024).
- Nguyen, D.T.; Park, Y.H.; Shin, K.Y.; Kwon, S.Y.; Lee, H.C.; Park, K.R. Fake finger-vein image detection based on Fourier and wavelet transforms. Digit. Signal Process. 2013, 23, 1401–1413. [Google Scholar] [CrossRef]
- Tome, P.; Vanoni, M.; Marcel, S. On the vulnerability of finger vein recognition to spoofing. In Proceedings of the International Conference on the Biometrics Special Interest Group, Darmstadt, Germany, 10–12 September 2014; pp. 1–10. [Google Scholar]
- Singh, J.M.; Venkatesh, S.; Raja, K.B.; Ramachandra, R.; Busch, C. Detecting finger-vein presentation attacks using 3D shape & diffuse reflectance decomposition. In Proceedings of the international conference on Signal-Image Technology & Internet-Based Systems, Sorrento, Italy, 26–29 November 2019; pp. 8–14. [Google Scholar] [CrossRef]
- Ramachandra, R.; Raja, K.B.; Venkatesh, S.K.; Busch, C. Design and development of low-cost sensor to capture ventral and dorsal finger-vein for biometric authentication. IEEE Sens. J. 2019, 19, 6102–6111. [Google Scholar] [CrossRef]
- Raghavendra, R.; Busch, C. Presentation attack detection algorithms for finger vein biometrics: A comprehensive study. In Proceedings of the International Conference on Signal Image Technology & Internet Based Systems, Bangkok, Thailand, 23–27 November 2015; pp. 628–632. [Google Scholar] [CrossRef]
- Krishnan, A.; Thomas, T.; Nayar, G.R.; Sasilekha Mohan, S. Liveness detection in finger vein imaging device using plethysmographic signals. In Proceedings of the Intelligent Human Computer Interaction, Allahabad, India, 7–9 December 2018; pp. 251–260. [Google Scholar] [CrossRef]
- Schuiki, J.; Prommegger, B.; Uhl, A. Confronting a variety of finger vein recognition algorithms with wax presentation attack artefacts. In Proceedings of the IEEE International Workshop on Biometrics and Forensics, Rome, Italy, 6–7 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, H.; Fang, P.; Hao, Z. A GAN -based method for generating finger vein dataset. In Proceedings of the International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 24–26 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Z.; Li, M.; Wu, H. GAN-based image augmentation for finger-vein biometric recognition. IEEE Access 2019, 7, 183118–183132. [Google Scholar] [CrossRef]
- Ciano, G.; Andreini, P.; Mazzierli, T.; Bianchini, M.; Scarselli, F. A multi-stage GAN for multi-organ chest X-ray image generation and segmentation. Mathematics 2021, 9, 2896. [Google Scholar] [CrossRef]
- Wang, L.; Guo, D.; Wang, G.; Zhang, S. Annotation-efficient learning for medical image segmentation based on noisy pseudo labels and adversarial learning. IEEE Trans. Med. Imaging 2020, 40, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hong, J.S.; Kim, S.G.; Park, C.; Nam, S.H.; Park, K.R. RMOBF-Net: Network for the restoration of motion and optical blurred finger-vein images for improving recognition accuracy. Mathematics 2022, 10, 3948. [Google Scholar] [CrossRef]
- Hong, J.S.; Choi, J.; Kim, S.G.; Owais, M.; Park, K.R. INF-GAN: Generative adversarial network for illumination normalization of finger-vein images. Mathematics 2021, 9, 2613. [Google Scholar] [CrossRef]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Tirunagari, S.; Poh, N.; Bober, M.; Windridge, D. Windowed DMD as a microtexture descriptor for finger vein counter-spoofing in biometrics. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Rome, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Kocher, D.; Schwarz, S.; Uhl, A. Empirical evaluation of LBP-extension features for finger vein spoofing detection. In Proceedings of the International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 21–23 September 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Bok, J.Y.; Suh, K.H.; Lee, E.C. Detecting fake finger-vein data using remote photoplethysmography. Electronics 2019, 8, 1016. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556; pp. 1–14, 1–14. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 84–90. [Google Scholar] [CrossRef]
- Shaheed, K.; Mao, A.; Qureshi, I.; Abbas, Q.; Kumar, M.; Zhang, X. Finger-vein presentation attack detection using depthwise separable convolution neural network. Expert Syst. Appl. 2022, 198, 116786. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Sengupta, S.; Kanazawa, A.; Castillo, C.D.; Jacobs, D.W. SfSNet: Learning shape, reflectance and illuminance of faces in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2017; pp. 6296–6305. [Google Scholar] [CrossRef]
- Kang, B.J.; Park, K.R. Multimodal biometric method based on vein and geometry of a single finger. IET Comput. Vision 2010, 4, 209–217. [Google Scholar] [CrossRef]
- Park, T.; Efros, A.A.; Zhang, R.; Zhu, J.-Y. Contrastive learning for unpaired image-to-image translation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 319–345. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Polosukhin, I. Attention is all you need. In Proceedings of the Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1–11. [Google Scholar] [CrossRef]
- Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-aware minimization for efficiently improving generalization. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2022; pp. 7360–7371. [Google Scholar] [CrossRef]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Zou, D.; Cao, Y.; Li, Y.; Gu, Q. Understanding the generalization of Adam in learning neural networks with proper regularization. arXiv 2021, arXiv:2108.11371. [Google Scholar] [CrossRef]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.Y.; Wang, Z.; Paul Smolley, S. Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2813–2821. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 694–711. [Google Scholar] [CrossRef]
- Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11976–11986. [Google Scholar] [CrossRef]
- Guo, M.-H.; Lu, C.-Z.; Liu, Z.-N.; Cheng, M.-M.; Hu, S.-M. Visual attention network. Comput. Vis. Media 2023, 9, 733–752. [Google Scholar] [CrossRef]
- Brouty, X.; Garcin, M. Fractal properties; information theory, and market efficiency. Chaos Solitons Fractals 2024, 180, 114543. [Google Scholar] [CrossRef]
- Yin, J. Dynamical fractal: Theory and case study. Chaos Solitons Fractals 2023, 176, 114190. [Google Scholar] [CrossRef]
- Crownover, R.M. Introduction to Fractals and Chaos, 1st ed.; Jones & Bartlett Publisher: Burlington, MA, USA, 1995. [Google Scholar]
- Tome, P.; Raghavendra, R.; Busch, C.; Tirunagari, S.; Poh, N.; Shekar, B.; Gragnaniello, D.; Sansone, C.; Verdoliva, L.; Marcel, S. The 1st competition on counter measures to finger vein spoofing attacks. In Proceedings of the International Conference on Biometrics, Phuket, Thailand, 19–22 May 2015; pp. 513–518. [Google Scholar] [CrossRef]
- NVIDIA GeForce RTX 3060. Available online: https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3060-3060ti/ (accessed on 25 June 2024).
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local Nash equilibrium. In Proceedings of the International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6629–6640. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 7–9 August 2017; pp. 214–223. [Google Scholar] [CrossRef]
- ISO/IEC JTC1 SC37; Biometrics. ISO/IEC WD 30107–3: Information Technology—Presentation Attack Detection-Part 3: Testing and Reporting and Classification of Attacks. International Organization for Standardization: Geneva, Switzerland, 2014.
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar] [CrossRef]
- Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; Catanzaro, B. Catanzaro, High-resolution image synthesis and semantic manipulation with conditional GANs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8798–8807. [Google Scholar] [CrossRef]
- Muhammad, M.B.; Yeasin, M. Eigen-cam: Class activation map using principal components. In Proceedings of the International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Face Anti-spoofing Challenge. Available online: https://sites.google.com/view/face-anti-spoofing-challenge/ (accessed on 26 February 2024).
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxvit: Multi-axis vision transformer. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 459–479. [Google Scholar] [CrossRef]
- Jetson TX2 Module. Available online: https://developer.nvidia.com/embedded/jetson-tx2 (accessed on 23 July 2024).
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
Category | Methods | Advantages | Disadvantages | |
---|---|---|---|---|
Spoof attack | Using fake fabricated artifacts | Printed on OHP film, matte paper, and A4 paper using a LaserJet printer at resolutions of 300, 1200, 2400 dpi and then applied to the finger [5] | Considers even the curvature of the finger during the spoof attack |
|
Printed using an inkjet printer and applied to a prosthesis and a thin rubber cap [10] | ||||
Printed using a LaserJet printer and applied to wax [11] | ||||
Printed using laser and inkjet printers and replayed on smartphone display [9] | Provides more realistic motion information through display replaying | |||
Printed using a LaserJet printer and enhanced the vein outline with a black whiteboard marker [6] | Improved vein pattern quality by applying post-processing after printing |
| ||
Printed on glossy paper using an inkjet printer and enhanced the vein pattern using Ramachandra et al. [8]‘s algorithm [7] | ||||
Using fake generated images | Generated fake finger-vein images using CycleGAN [3] | The first study to use generated finger-vein images for both spoof attack and detection | Unable to generate elaborate fake finger-vein images | |
Generates fake finger-vein images using DCS-GAN (Proposed method) | Generates fake data that is similar to the characteristic distribution of original finger-vein images | Unlike the structure of the existing research model CycleGAN, requires two discriminators and a multilayered perceptron (MLP) | ||
Spoof detection | Machine learning-based | Steerable pyramid + SVM [9] | Requires less time for training compared to deep learning-based methods | Performance degradation in spoof detection depending on various spoof data generation methods |
W-DMD + SVM [19] | ||||
FT, Haar and Daubechies wavelet + SVM [5] | ||||
Discrete FT + SVM [21] | ||||
Deep learning-based | Modified network of AlexNet or VGG-Net + PCA + SVM [1] | Enables diverse spoof detection through learning CNN filters for efficient feature extraction | Lower accuracy in spoof detection against elaborately created fake finger-vein images | |
Xception (entry flow) + linear SVM [24] | ||||
Ensemble network of DenseNet-161 and DenseNet-169 + SVM [3] | ||||
SfS-Net + linear SVM [7] | ||||
Enhanced network of ConvNeXt-Small (Proposed method) |
| The time required for CNN training is significant |
Layer Type | Kernel Size | Number of Filters | Stride | Input Size | Output Size | |
---|---|---|---|---|---|---|
Input | NA | NA | NA | 224 × 224 × 3 | 224 × 224 × 3 | |
3 × 3 Padding (Reflect) | NA | NA | NA | 224 × 224 × 3 | 230 × 230 × 3 | |
1st Conv Block * | Conv Instance Norm (ReLU) | 7 NA | 64 NA | 1 NA | 230 × 230 × 3 224 × 224 × 64 | 224 × 224 × 64 224 × 224 × 64 |
2nd Conv Block * (ReLU) | 3 | 128 | 1 | 224 × 224 × 64 | 224 × 224 × 128 | |
Antialiasing Sampling (Down) | 4 | NA | NA | 224 × 224 × 128 | 112 × 112 × 128 | |
3rd Conv Block * (ReLU) | 3 | 256 | 1 | 112 × 112 × 128 | 112 × 112 × 256 | |
Antialiasing Sampling (Down) | 4 | NA | NA | 112 × 112 × 256 | 56 × 56 × 256 | |
1st Res Block | 1 × 1 Padding (Reflect) 4th Conv Block * (ReLU) 1 × 1 Padding (Reflect) 5th Conv Block * (Linear) | NA 3 NA 3 | NA 256 NA 256 | NA 1 NA 1 | 56 × 56 × 256 58 × 58 × 256 56 × 56 × 256 58 × 58 × 256 | 58 × 58 × 256 56 × 56 × 256 58 × 58 × 256 56 × 56 × 256 |
1st Self-attention | NA | NA | NA | 56 × 56 × 256 | 56 × 56 × 256 | |
2nd–8th Res Blocks with Self-attentions | NA | NA | NA | 56 × 56 × 256 | 56 × 56 × 256 | |
9th Res Block | 3 | 256 | 1 | 56 × 56 × 256 | 56 × 56 × 256 | |
9th Self-attention | NA | NA | NA | 56 × 56 × 256 | 56 × 56 × 256 | |
Antialiasing Sampling (Up) | 4 | NA | NA | 56 × 56 × 256 | 112 × 112 × 256 | |
22nd Conv Block * (ReLU) | 3 | 128 | 1 | 112 × 112 × 256 | 112 × 112 × 128 | |
Antialiasing Sampling (Up) | 4 | NA | NA | 112 × 112 × 128 | 224 × 224 × 128 | |
23rd Conv Block * (ReLU) | 3 | 64 | 1 | 224 × 224 × 128 | 224 × 224 × 64 | |
3 × 3 Padding (Reflect) | NA | NA | NA | 224 × 224 × 64 | 230 × 230 × 64 | |
24th Conv Block (Tanh) | 7 | 3 | 1 | 230 × 230 × 64 | 224 × 224 × 3 | |
Output | NA | NA | NA | 224 × 224 × 3 | 224 × 224 × 3 |
Layer | Kernel Size | Number of Filters | Stride | Input Size | Output Size |
---|---|---|---|---|---|
Input | NA | NA | NA | 224 × 224 × 3 | 224 × 224 × 3 |
25th Conv Block (Leaky ReLU) | 4 | 64 | 1 | 224 × 224 × 3 | 224 × 224 × 64 |
Antialiasing Sampling (Down) | 4 | NA | n/1 | 224 × 224 × 64 | 112 × 112 × 64 |
26th Conv Block * (Leaky ReLU) | 4 | 128 | 1 | 112 × 112 × 64 | 112 × 112 × 128 |
Antialiasing Sampling (Down) | 4 | NA | NA | 112 × 112 × 128 | 56 × 56 × 128 |
27th Conv Block * (Leaky ReLU) | 4 | 256 | 1 | 56 × 56 × 128 | 56 × 56 × 256 |
Antialiasing Sampling (Down) | 4 | NA | NA | 56 × 56 × 256 | 28 × 28 × 256 |
1 × 1 Padding (Constant) | NA | NA | NA | 28 × 28 × 256 | 30 × 30 × 256 |
28th Conv Block * (Leaky ReLU) | 4 | 512 | 1 | 30 × 30 × 256 | 27 × 27 × 512 |
1 × 1 Padding (Constant) | NA | NA | NA | 27 × 27 × 512 | 29 × 29 × 512 |
29th Conv Block (Linear) | 4 | 1 | 1 | 29 × 29 × 512 | 26 × 26 × 1 |
Output | NA | NA | NA | 26 × 26 × 1 | 26 × 26 × 1 |
Layer | Number of Blocks | Kernel Size | Number of Filters | Stride | Input Size | Output Size | |
---|---|---|---|---|---|---|---|
Input | NA | NA | NA | NA | 224 × 224 × 3 | 224 × 224 × 3 | |
Stem | Conv * | NA | 4 × 4 | 96 | 4 | 224 × 224 × 3 | 56 × 56 × 96 |
1st ConvNeXt Block | Depthwise Conv * Dense (GELU) Dense | 3 | 7 × 7 1 × 1 1 × 1 | 96 384 96 | 1 1 1 | 56 × 56 × 96 56 × 56 × 96 56 × 56 × 384 | 56 × 56 × 96 56 × 56 × 384 56 × 56 × 96 |
1st Down Sampling Block | Layer Norm Conv | 1 | NA 2 × 2 | NA 192 | NA 2 | 56 × 56 × 96 56 × 56 × 96 | 56 × 56 × 96 28 × 28 × 192 |
2nd ConvNeXt Block | 3 | 7 × 7 1 × 1 1 × 1 | 192 768 192 | 1 1 1 | 28 × 28 × 192 28 × 28 × 192 28 × 28 × 768 | 28 × 28 × 192 28 × 28 × 768 28 × 28 × 192 | |
2nd Down Sampling Block | 1 | NA 2 × 2 | NA 384 | NA 2 | 28 × 28 × 192 28 × 28 × 192 | 28 × 28 × 192 14 × 14 × 384 | |
3rd ConvNeXt Block | 27 | 7 × 7 1 × 1 1 × 1 | 384 1536 384 | 1 1 1 | 14 × 14 × 384 14 × 14 × 384 14 × 14 × 1536 | 14 × 14 × 384 14 × 14 × 1536 14 × 14 × 384 | |
3rd Down Sampling Block | 1 | NA 2 × 2 | NA 768 | NA 2 | 14 × 14 × 384 14 × 14 × 384 | 14 × 14 × 384 7 × 7 × 768 | |
4th ConvNeXt Block | 3 | 7 × 7 1 × 1 1 × 1 | 768 3072 768 | 1 1 1 | 7 × 7 × 768 7 × 7 × 768 7 × 7 × 3072 | 7 × 7 × 768 7 × 7 × 3072 7 × 7 × 768 | |
Conv (GELU) | NA | 1 × 1 | 768 | 1 | 7 × 7 × 768 | 7 × 7 × 768 | |
LKA | Conv Dilation Conv Conv multiply | NA NA NA NA | 5 × 5 7 × 7 1 × 1 NA | 768 768 768 NA | 1 1 1 NA | 7 × 7 × 768 7 × 7 × 768 7 × 7 × 768 7 × 7 × 768 | 7 × 7 × 768 7 × 7 × 768 7 × 7 × 768 7 × 7 × 768 |
Conv Add | NA NA | 1 × 1 NA | 768 NA | 1 NA | 7 × 7 × 768 7 × 7 × 768 | 7 × 7 × 768 7 × 7 × 768 | |
Global Average Pooling | NA | NA | NA | NA | 7 × 7 × 768 | 768 | |
Dense (Softmax) | NA | NA | 2 | NA | 768 | 2 |
Database | Number of Trials | Number of Individuals | Number of Hands | Number of Fingers | Total Number of Images |
---|---|---|---|---|---|
ISPR | 10 | 33 | 2 | 5 | 3300 |
Idiap | 2 | 110 | 2 | 1 | 440 |
Parameter Types | Value |
---|---|
Learning decay step | 10,000 |
Learning decay rate | 0.9 |
Learning rate | 2 × 10−4 |
Optimizer | Adam + SAM |
Beta 1 | 0.5 |
Beta 2 | 0.999 |
Batch size | 1 |
Epochs | 400 |
Adversarial loss | LSGAN |
Additional loss | Patch, Perceptual |
Parameter Types | Value |
---|---|
Learning decay step | None |
Learning decay rate | None |
Learning rate | 1 × 10−6 |
Beta 1 | 0.9 |
Beta 2 | 0.999 |
Epsilon | 1 × 10−7 |
Batch size | 4 |
Epochs | 30 |
Loss | Cross entropy |
Perceptual Loss | Dense Perceptual | SAM | Self-Attention | FID | WD | ||||
---|---|---|---|---|---|---|---|---|---|
1-Fold Validation | 2-Fold Validation | Average | 1-Fold Validation | 2-Fold Validation | Average | ||||
19.261 | 25.869 | 22.565 | 30.380 | 7.010 | 18.695 | ||||
√ | 16.365 | 18.927 | 17.646 | 19.576 | 7.180 | 13.378 | |||
√ | 13.149 | 14.689 | 13.919 | 4.286 | 6.428 | 5.357 | |||
√ | √ | 12.283 | 5.457 | 8.870 | 25.039 | 20.554 | 22.797 | ||
√ | √ | √ | 8.531 | 5.671 | 7.101 | 19.782 | 17.050 | 18.416 |
Classification Model | Generation Model | 1-Fold Validation | 2-Fold Validation | Average | |||
---|---|---|---|---|---|---|---|
Perceptual Loss | Dense Perceptual | SAM | Self-Attention | ||||
DenseNet-161 | 0.27 | 0.27 | 0.27 | ||||
√ | 0.36 | 0.33 | 0.35 | ||||
√ | 0.46 | 0.49 | 0.48 | ||||
√ | √ | 0.73 | 0.79 | 0.76 | |||
√ | √ | √ | 0.94 | 1.15 | 1.05 | ||
DenseNet-169 | 0.36 | 0.42 | 0.39 | ||||
√ | 0.64 | 0.70 | 0.67 | ||||
√ | 0.67 | 0.73 | 0.70 | ||||
√ | √ | 0.73 | 0.82 | 0.77 | |||
√ | √ | √ | 1.06 | 1.00 | 1.03 |
Augmentation | FID | WD | |||||
---|---|---|---|---|---|---|---|
Random Crop | # Directions for Shift | 1-Fold Validation | 2-Fold Validation | Average | 1-Fold Validation | 2-Fold Validation | Average |
256 → 224 | × | 29.579 | 26.997 | 28.288 | 40.141 | 61.686 | 50.914 |
300 → 224 | 27.765 | 26.571 | 27.168 | 35.086 | 37.973 | 36.530 | |
256 → 224 | 2 | 30.377 | 26.366 | 28.372 | 20.282 | 40.532 | 30.407 |
300 → 224 | 30.062 | 23.533 | 26.798 | 30.382 | 46.741 | 38.562 | |
256 → 224 | 4 | 24.810 | 21.891 | 23.351 | 8.614 | 11.632 | 10.123 |
300 → 224 | 27.548 | 24.965 | 26.257 | 28.814 | 50.336 | 39.575 | |
256 → 224 | 8 | 25.685 | 28.129 | 26.907 | 16.505 | 18.805 | 17.655 |
300 → 224 | 27.702 | 24.758 | 26.230 | 24.214 | 25.905 | 25.060 |
Classification Model | Post Processing | Kernel Size | 1-Fold Validation | 2-Fold Validation | Average |
---|---|---|---|---|---|
DenseNet-161 | Average filter | 3 × 3 | 0.30 | 0.49 | 0.40 |
5 × 5 | 0.06 | 0.09 | 0.08 | ||
Gaussian filter | 3 × 3 | 0.85 | 1.33 | 1.09 | |
5 × 5 | 0.18 | 0.30 | 0.24 | ||
Median filter | 3 × 3 | 3.49 | 3.67 | 3.58 | |
5 × 5 | 6.25 | 5.22 | 5.74 | ||
DenseNet-169 | Average filter | 3 × 3 | 0.70 | 0.64 | 0.67 |
5 × 5 | 0.24 | 0.42 | 0.33 | ||
Gaussian filter | 3 × 3 | 0.64 | 0.94 | 0.79 | |
5 × 5 | 0.36 | 0.40 | 0.38 | ||
Median filter | 3 × 3 | 2.31 | 3.09 | 2.70 | |
5 × 5 | 8.04 | 6.58 | 7.31 |
Classification Model | Post Processing | Kernel Size | 1-Fold Validation | 2-Fold Validation | Average |
---|---|---|---|---|---|
DenseNet-161 | Average filter | 3 × 3 | 1.82 | 2.27 | 2.05 |
5 × 5 | 0.91 | 0.68 | 0.80 | ||
Gaussian filter | 3 × 3 | 2.27 | 2.73 | 2.50 | |
5 × 5 | 1.82 | 2.73 | 2.28 | ||
Median filter | 3 × 3 | 1.14 | 1.14 | 1.14 | |
5 × 5 | 0.00 | 0.45 | 0.23 | ||
DenseNet-169 | Average filter | 3 × 3 | 1.36 | 1.82 | 1.59 |
5 × 5 | 0.91 | 2.28 | 1.60 | ||
Gaussian filter | 3 × 3 | 2.27 | 2.73 | 2.50 | |
5 × 5 | 1.36 | 1.36 | 1.36 | ||
Median filter | 3 × 3 | 2.05 | 0.91 | 1.48 | |
5 × 5 | 1.59 | 0.23 | 0.91 |
Database | Model | FID | WD |
---|---|---|---|
ISPR | Pix2Pix [47] | 32.193 | 7.887 |
Pix2PixHD [48] | 13.875 | 10.305 | |
CycleGAN [18] | 23.576 | 13.792 | |
CUT [29] | 22.565 | 18.695 | |
DCS-GAN (Proposed) | 7.601 | 18.158 | |
Idiap | Pix2Pix [47] | 55.062 | 5.750 |
Pix2PixHD [48] | 24.200 | 2.625 | |
CycleGAN [18] | 33.176 | 2.868 | |
CUT [29] | 24.196 | 3.109 | |
DCS-GAN (Proposed) | 23.351 | 10.123 |
Results | Case 1 | Case 2 | Case 3 | Case 4 | ||||
---|---|---|---|---|---|---|---|---|
Real Figure 10a | Fake Figure 10b | Real Figure 10c | Fake Figure 10d | Real Figure 10e | Fake Figure 10f | Real Figure 10g | Fake Figure 10h | |
R2 | 0.99903 | 0.99930 | 0.99689 | 0.99701 | 0.99968 | 0.99980 | 0.99916 | 0.99931 |
C | 0.99952 | 0.99965 | 0.99844 | 0.99850 | 0.99984 | 0.99990 | 0.99958 | 0.99965 |
FD | 2.00286 | 1.99995 | 2.00492 | 1.99574 | 2.03563 | 2.04030 | 1.96712 | 1.96665 |
Model | Database | 1-Fold | 2-Fold | Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | ||
ConvNeXt-Tiny | ISPR | 0.24 | 2.37 | 1.31 | 0.12 | 1.15 | 0.64 | 0.18 | 1.76 | 0.98 |
Idiap | 0.00 | 0.91 | 0.45 | 0.00 | 0.45 | 0.23 | 0.00 | 0.68 | 0.34 | |
Enhanced ConvNeXt-Tiny | ISPR | 0.67 | 0.97 | 0.82 | 0.00 | 0.61 | 0.30 | 0.34 | 0.79 | 0.56 |
Idiap | 0.00 | 0.45 | 0.23 | 0.00 | 0.45 | 0.23 | 0.00 | 0.45 | 0.23 | |
ConvNeXt-Small | ISPR | 0.79 | 1.40 | 1.09 | 0.42 | 0.61 | 0.52 | 0.61 | 1.01 | 0.81 |
Idiap | 0.91 | 0.00 | 0.45 | 0.00 | 0.45 | 0.23 | 0.46 | 0.23 | 0.34 | |
Enhanced ConvNeXt-Small (Proposed) | ISPR | 0.43 | 0.91 | 0.67 | 0.06 | 0.18 | 0.12 | 0.25 | 0.55 | 0.40 |
Idiap | 0.00 | 0.45 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.12 |
Database | Method | 1-Fold | 2-Fold | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | |||
ISPR | SVM | Linear | 0.06 | 2.31 | 1.18 | 0.00 | 1.03 | 0.52 | 0.03 | 1.67 | 0.85 |
RBF | 0.06 | 2.31 | 1.18 | 0.00 | 1.03 | 0.52 | 0.03 | 1.67 | 0.85 | ||
Poly | 0.06 | 2.19 | 1.12 | 0.00 | 1.03 | 0.52 | 0.03 | 1.61 | 0.82 | ||
Sigmoid | 0.00 | 4.86 | 2.43 | 0.00 | 2.00 | 1.00 | 0.00 | 3.43 | 1.72 | ||
Idiap | SVM | Linear | 0.00 | 0.91 | 0.45 | 0.00 | 0.45 | 0.23 | 0.00 | 0.68 | 0.34 |
RBF | 0.00 | 0.91 | 0.45 | 0.00 | 0.45 | 0.23 | 0.00 | 0.68 | 0.34 | ||
Poly | 0.00 | 0.91 | 0.45 | 0.00 | 0.45 | 0.23 | 0.00 | 0.68 | 0.34 | ||
Sigmoid | 0.00 | 3.18 | 1.59 | 0.00 | 0.91 | 0.45 | 0.00 | 2.05 | 1.02 |
Method | 1-Fold | 2-Fold | Average | ||||||
---|---|---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | |
Ensemble Networks + SVM [3] | 0.06 | 2.19 | 1.12 | 0.00 | 1.03 | 0.52 | 0.03 | 1.61 | 0.82 |
Modified Xception + LSVM [24] | 0.61 | 2.61 | 1.61 | 0.30 | 1.03 | 0.67 | 0.46 | 1.82 | 1.14 |
Steerable pyramid + SVM [9] | 7.83 | 2.79 | 5.31 | 6.43 | 1.76 | 4.10 | 7.13 | 2.28 | 4.71 |
Modified VGG16 + PCA + SVM [1] | 2.79 | 0.00 | 1.40 | 3.46 | 0.12 | 1.79 | 3.13 | 0.06 | 1.60 |
MaxViT-Small [51] | 2.31 | 1.28 | 1.79 | 2.31 | 2.00 | 2.15 | 2.31 | 1.64 | 1.97 |
Enhanced ConvNeXt-Small (Proposed) | 0.43 | 0.91 | 0.67 | 0.06 | 0.18 | 0.12 | 0.25 | 0.55 | 0.40 |
Method | 1-Fold | 2-Fold | Average | ||||||
---|---|---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | |
Ensemble Networks + SVM [3] | 0.00 | 0.91 | 0.45 | 0.00 | 0.45 | 0.23 | 0.00 | 0.68 | 0.34 |
Modified Xception + LSVM [24] | 0.00 | 1.36 | 0.68 | 0.00 | 3.64 | 1.82 | 0.00 | 2.50 | 1.25 |
Steerable pyramid + SVM [9] | 0.00 | 1.82 | 0.91 | 0.00 | 2.27 | 1.14 | 0.00 | 2.05 | 1.03 |
Modified VGG16 + PCA + SVM [1] | 0.45 | 2.27 | 1.36 | 0.91 | 0.45 | 0.68 | 0.68 | 1.36 | 1.02 |
MaxViT-Small [51] | 0.91 | 0.45 | 0.68 | 1.36 | 0.45 | 0.91 | 1.14 | 0.45 | 0.80 |
Enhanced ConvNeXt-Small (Proposed) | 0.00 | 0.45 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.12 |
Database | Model | 1-Fold | 2-Fold | Average | ||||||
---|---|---|---|---|---|---|---|---|---|---|
APCER | BPCER | ACER | APCER | BPCER | ACER | APCER | BPCER | ACER | ||
ISPR | Pix2Pix [47] | 0.00 | 0.55 | 0.27 | 0.24 | 0.18 | 0.21 | 0.12 | 0.37 | 0.24 |
Pix2PixHD [48] | 0.30 | 0.49 | 0.39 | 0.14 | 0.28 | 0.21 | 0.22 | 0.39 | 0.30 | |
CycleGAN [18] | 0.79 | 0.12 | 0.46 | 0.00 | 0.55 | 0.27 | 0.40 | 0.34 | 0.37 | |
CUT [29] | 0.00 | 0.67 | 0.33 | 0.28 | 0.57 | 0.42 | 0.14 | 0.62 | 0.38 | |
DCS-GAN (Proposed) | 0.43 | 0.91 | 0.67 | 0.06 | 0.18 | 0.12 | 0.25 | 0.55 | 0.40 | |
Idiap | Pix2Pix [47] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Pix2PixHD [48] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CycleGAN [18] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
CUT [29] | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
DCS-GAN (Proposed) | 0.00 | 0.45 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.12 |
Method | Processing Time (Unit: ms (fps)) | GPU Memory Usage (Unit: MB) | Number of Param. (Unit: M) | FLOPs (Unit: G) |
---|---|---|---|---|
Ensemble Networks + SVM [3] | 113.30 (8.83) | 190.66 | 39.34 | 22.27 |
Modified Xception + LSVM [24] | 27.87 (35.88) | 96.58 | 1.40 | 3.03 |
Modified VGG16 + PCA + SVM [1] | 61.70 (16.20) | 538.85 | 14.71 | 30.95 |
MaxViT-Small [51] | 218.06 (4.59) | 314.98 | 68.23 | 22.32 |
Enhanced ConvNeXt-Small (Proposed) | 97.22 (10.29) | 219.16 | 51.29 | 17.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.G.; Hong, J.S.; Kim, J.S.; Park, K.R. Estimation of Fractal Dimension and Detection of Fake Finger-Vein Images for Finger-Vein Recognition. Fractal Fract. 2024, 8, 646. https://doi.org/10.3390/fractalfract8110646
Kim SG, Hong JS, Kim JS, Park KR. Estimation of Fractal Dimension and Detection of Fake Finger-Vein Images for Finger-Vein Recognition. Fractal and Fractional. 2024; 8(11):646. https://doi.org/10.3390/fractalfract8110646
Chicago/Turabian StyleKim, Seung Gu, Jin Seong Hong, Jung Soo Kim, and Kang Ryoung Park. 2024. "Estimation of Fractal Dimension and Detection of Fake Finger-Vein Images for Finger-Vein Recognition" Fractal and Fractional 8, no. 11: 646. https://doi.org/10.3390/fractalfract8110646
APA StyleKim, S. G., Hong, J. S., Kim, J. S., & Park, K. R. (2024). Estimation of Fractal Dimension and Detection of Fake Finger-Vein Images for Finger-Vein Recognition. Fractal and Fractional, 8(11), 646. https://doi.org/10.3390/fractalfract8110646