On the Rigorous Correspondence Between Operator Fractional Powers and Fractional Derivatives via the Sonine Kernel
Abstract
:1. Introduction
2. Preliminaries
2.1. Definitions of Fractional Integration and Differentiation
2.2. Sonine Kernel Theory
2.3. Operational Calculus
3. Representation of Commutable Operators in Fractional Calculus
3.1. Riemann–Liouville Fractional Integral
3.2. Caputo Fractional Derivative
3.2.1. Integral–Differential Property Method
3.2.2. Integral Transform Method
3.2.3. Operational Calculus Method
3.3. Riemann–Liouville Fractional Derivative
3.3.1. Integral–Differential Property Method
3.3.2. Integral Transform Method
3.3.3. Operational Calculus Method
3.4. Prabhakar Fractional Derivative
3.5. Caputo–Fabrizio Fractional Derivative
3.6. Atangana–Baleanu Fractional Derivative
3.7. Generalized Fractional Derivative with the Sonine Kernel Definition
4. Discussion
4.1. Fractal Operator Representation as a Function
4.2. The Operator Method and Superposition Principle for Fractional Differential Equations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heaviside, O. On Operators in Physical Mathematics. Part I. Proc. R. Soc. Lond. 1893, 52, 504–529. [Google Scholar] [CrossRef]
- Flegg, H.G. Mikusinski’s Operational Calculus. Int. J. Math. Educ. Sci. Technol. 1974, 5, 131–137. [Google Scholar] [CrossRef]
- Mildenberger, D. The Foundations of the Operational Calculus. Nachrichten Elektron. 1980, 34, 93–96. [Google Scholar]
- Lützen, J. Heaviside’s Operational Calculus and the Attempts to Rigorise It. Arch. Hist. Exact Sci. 1979, 21, 161–200. [Google Scholar] [CrossRef]
- Bengochea, G.; López, G. Mikusiński’s Operational Calculus with Algebraic Foundations and Applications to Bessel Functions. Integral Transform. Spec. Funct. 2014, 25, 272–282. [Google Scholar] [CrossRef]
- Mikusiński, J. Operational Calculus, 2nd ed.; Pergamon Press: Oxford, UK, 1983. [Google Scholar]
- Berg, L. Introduction to the Operational Calculus; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Glaeske, H.J.; Prudnikov, A.P.; Skórnik, K.A. Operational Calculus and Related Topics; Chapman and Hall/CRC: New York, NY, USA, 2006. [Google Scholar]
- Yu, X.B.; Yin, Y.J. Operator Kernel Functions in Operational Calculus and Applications in Fractals with Fractional Operators. Fractal Fract. 2023, 7, 755. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Caputo, M. Linear Models of Dissipation Whose Q Is Almost Frequency Independent-I. Ann. Geophys. 1966, 19, 75–94. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation Whose Q Is Almost Frequency Independent-II. Geophys. J. R. Astron. Soc. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A New Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar] [CrossRef]
- Atangana, A.; Alkahtani, B. Analysis of the Keller–Segel Model with a Fractional Derivative without Singular Kernel. Entropy 2015, 17, 4439–4453. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm sci 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Luchko, Y.F.; Srivastava, H.M. The Exact Solution of Certain Differential Equations of Fractional Order by Using Operational Calculus. Comput. Math. Appl. 1995, 29, 73–85. [Google Scholar] [CrossRef]
- Luchko, Y.; Gorenflo, R. An Operational Method for Solving Fractional Differential Equations with the Caputo Derivatives. Acta Math. Vietnam. 1999, 24, 207–233. [Google Scholar]
- Al-Kandari, M.; Hanna, L.A.-M.; Luchko, Y. On an Extension of the Mikusiński Type Operational Calculus for the Caputo Fractional Derivative. Integral Transform. Spec. Funct. 2021, 32, 710–725. [Google Scholar] [CrossRef]
- Rani, N.; Fernandez, A. An Operational Calculus Formulation of Fractional Calculus with General Analytic Kernels. Era 2022, 30, 4238–4255. [Google Scholar] [CrossRef]
- Hanna, L.A.M.; Al-Kandari, M.; Luchko, Y. Operational Method for Solving Fractional Differential Equations with the Left-and Right-Hand Sided Erdélyi-Kober Fractional Derivatives. Fract. Calc. Appl. Anal. 2020, 23, 103–125. [Google Scholar] [CrossRef]
- Luchko, Y. General Fractional Integrals and Derivatives with the Sonine Kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General Fractional Integrals and Derivatives and Their Applications. Phys. D Nonlinear Phenom. 2023, 455, 133906. [Google Scholar] [CrossRef]
- Luchko, Y. Operational Calculus for the General Fractional Derivative and Its Applications. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Giusti, A. General Fractional Calculus and Prabhakar’s Theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Tenreiro Machado, J.A. What Is a Fractional Derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef]
- Diethelm, K.; Kiryakova, V.; Luchko, Y.; Machado, J.A.T.; Tarasov, V.E. Trends, Directions for Further Research, and Some Open Problems of Fractional Calculus. Nonlinear Dyn. 2022, 107, 3245–3270. [Google Scholar] [CrossRef]
- Luchko, Y. On the 1st-Level General Fractional Derivatives of Arbitrary Order. Fractal Fract. 2023, 7, 183. [Google Scholar] [CrossRef]
- Sonine, N. Sur La Généralisation d’une Formule d’Abel. Acta Math. 1884, 4, 171–176. [Google Scholar] [CrossRef]
- Podlubny, I.; Magin, R.L.; Trymorush, I. Niels Henrik Abel and the Birth of Fractional Calculus. FCAA 2017, 20, 1068–1075. [Google Scholar] [CrossRef]
- Luchko, Y. General Fractional Integrals and Derivatives of Arbitrary Order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Tarasov, V.E. General Fractional Vector Calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Tarasov, V.E. General Non-Local Continuum Mechanics: Derivation of Balance Equations. Mathematics 2022, 10, 1427. [Google Scholar] [CrossRef]
- Kochubei, A.N. General Fractional Calculus, Evolution Equations, and Renewal Processes. Integr. Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. The General Fractional Derivative and Related Fractional Differential Equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Sales Teodoro, G.; Tenreiro Machado, J.A.; Capelas De Oliveira, E. A Review of Definitions of Fractional Derivatives and Other Operators. J. Comput. Phys. 2019, 388, 195–208. [Google Scholar] [CrossRef]
- Khan, A.; Ali Abro, K.; Tassaddiq, A.; Khan, I. Atangana–Baleanu and Caputo Fabrizio Analysis of Fractional Derivatives for Heat and Mass Transfer of Second Grade Fluids over a Vertical Plate: A Comparative Study. Entropy 2017, 19, 279. [Google Scholar] [CrossRef]
- Zhou, H.W.; Yang, S.; Zhang, S.Q. Modeling Non-Darcian Flow and Solute Transport in Porous Media with the Caputo–Fabrizio Derivative. Appl. Math. Model. 2019, 68, 603–615. [Google Scholar] [CrossRef]
- Wei, Q.; Zhou, H.W.; Yang, S. Non-Darcy Flow Models in Porous Media via Atangana-Baleanu Derivative. Chaos Solitons Fractals 2020, 141, 110335. [Google Scholar] [CrossRef]
- Hu, K.X.; Zhu, K.Q. Mechanical Analogies of Fractional Elements. Chin. Phys. Lett. 2009, 26, 108301. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, K.-Q. On the Definition of Fractional Derivatives in Rheology. Theor. Appl. Mech. Lett. 2011, 1, 012007. [Google Scholar] [CrossRef]
Differential Kernel | Operator Part | Caputo Type | RL Type |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yu, X.; Yin, Y. On the Rigorous Correspondence Between Operator Fractional Powers and Fractional Derivatives via the Sonine Kernel. Fractal Fract. 2024, 8, 653. https://doi.org/10.3390/fractalfract8110653
Liu Z, Yu X, Yin Y. On the Rigorous Correspondence Between Operator Fractional Powers and Fractional Derivatives via the Sonine Kernel. Fractal and Fractional. 2024; 8(11):653. https://doi.org/10.3390/fractalfract8110653
Chicago/Turabian StyleLiu, Zelin, Xiaobin Yu, and Yajun Yin. 2024. "On the Rigorous Correspondence Between Operator Fractional Powers and Fractional Derivatives via the Sonine Kernel" Fractal and Fractional 8, no. 11: 653. https://doi.org/10.3390/fractalfract8110653
APA StyleLiu, Z., Yu, X., & Yin, Y. (2024). On the Rigorous Correspondence Between Operator Fractional Powers and Fractional Derivatives via the Sonine Kernel. Fractal and Fractional, 8(11), 653. https://doi.org/10.3390/fractalfract8110653