Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation
Abstract
:1. Introduction
2. Preliminaries
3. Derivation of the Compact ADI Difference Scheme
4. Stability and Convergence Analysis
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TFNSE | Time-fractional nonlinear Schrödinger equation |
ADI | Alternating direction implicit |
2D | Two-dimensional |
References
- Naber, M. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Zhang, Q.; Gao, G. Finite Difference Methods for Nonlinear Evolution Equations; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2023. [Google Scholar]
- Gao, Z.; Xie, S. Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl. Numer. Math. 2011, 61, 593–614. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Gao, G.H.; Sun, Z.Z.; Zhang, H.W. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 2014, 259, 33–50. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A New Difference Scheme for the Time Fractional Diffusion Equation; Academic Press Professional, Inc.: Cambridge, MA, USA, 2015. [Google Scholar]
- Roul, P.; Rohil, V. A novel high-order numerical scheme and its analysis for the two-dimensional time-fractional reaction-subdiffusion equation. Numer. Algorithms 2022, 90, 1357–1387. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ren, L. A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 2019, 342, 71–93. [Google Scholar] [CrossRef]
- Jin, C.; Zhizhong, S.; Hongwei, W. A high accurate and conservative difference scheme for the solution of nonlinear Schrödinger eqaution. Numer. Math. J. Chin. Univ. 2015, 37, 31–52. [Google Scholar]
- Rezamokhtari, G. Stability and Convergence Analyses of the FDM Based on Some L-Type Formulae for Solving the Subdiffusion Equation. Numer. Math. Theory Methods Appl. 2021, 14, 945. [Google Scholar]
- Dai, W.; Nassar, R. A New ADI Scheme for Solving Three-Dimensional Parabolic Equations with First-Order Derivatives and Variable Coefficients. J. Comput. Anal. Appl. 2000, 2, 293–308. [Google Scholar]
- Fei, M.; Wang, N.; Huang, C.; Ma, X. A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation. Appl. Numer. Math. 2020, 153, 399–411. [Google Scholar] [CrossRef]
- Wu, L.; Zhai, S. A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. Appl. Math. Comput. 2019, 387, 124564. [Google Scholar] [CrossRef]
- Eskar, R.; Feng, X.; Kasim, E. On high-order compact schemes for the multidimensional time-fractional Schrödinger equation. Adv. Differ. Equ. 2020, 2020, 492. [Google Scholar] [CrossRef]
- Mokhtari, R.; Mostajeran, F. A high order formula to approximate the Caputo fractional derivative. Appl. Math. Comput. 2020, 2, 29. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Holte, J.M. Discrete Gronwall lemma and applications. In Proceedings of the MAA-NCS Meeting at the University of North Dakota, Collegeville, MN, USA, 19–24 July 2009; Sciene Press: Beijing, China, 2021; 24, pp. 1–7. [Google Scholar]
- Zhang, Y.N.; Sun, Z.Z. Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation. J. Sci. Comput. 2014, 59, 104–128. [Google Scholar] [CrossRef]
- Wang, Y.M. Error and extrapolation of a compact LOD method for parabolic differential equations. J. Comput. Appl. Math. 2011, 235, 1367–1382. [Google Scholar] [CrossRef]
- Sun, Z.Z. Numerical Solution of Partial Differential Equations; Science Press: Beijing, China, 2005. [Google Scholar]
- Atouani, N.; Omrani, K. On the convergence of conservative difference schemes for the 2D generalized Rosenau–Korteweg de Vries equation. Appl. Math. Comput. 2015, 250, 832–847. [Google Scholar] [CrossRef]
- Liao, H.L.; Sun, Z.Z. Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 2010, 26, 37–60. [Google Scholar] [CrossRef]
- Bhatt, H.P.; Khaliq, A.Q.M. Higher order exponential time differencing scheme for system of coupled nonlinear Schrdinger equations. Appl. Math. Comput. 2014, 228, 271–291. [Google Scholar]
h | N | -Error | Order | |
---|---|---|---|---|
1/5 | 50 | 0.0100 | - | |
0.1 | 1/10 | 622 | 3.8942 | |
1/20 | 7735 | 3.9998 | ||
1/5 | 50 | - | ||
0.5 | 1/10 | 317 | 3.8853 | |
1/20 | 2016 | 4.0002 | ||
1/5 | 50 | - | ||
0.9 | 1/10 | 215 | 3.9001 | |
1/20 | 925 | 4.0114 |
-Error | Order | CPU(s) | ||
---|---|---|---|---|
1/20 | - | 10.39 | ||
0.25 | 1/40 | 1.2134 | 15.50 | |
1/80 | 1.2427 | 43.42 | ||
1/20 | - | 14.05 | ||
0.5 | 1/40 | 1.4823 | 19.17 | |
1/80 | 1.4892 | 36.78 | ||
1/20 | - | 11.69 | ||
0.75 | 1/40 | 1.7227 | 24.53 | |
1/80 | 1.7252 | 40.39 |
h | N | -Error | Order | |
---|---|---|---|---|
1/5 | 100 | - | ||
0.1 | 1/10 | 1243 | 3.8901 | |
1/20 | 15457 | 4.0091 | ||
1/5 | 100 | - | ||
0.5 | 1/10 | 635 | 3.9012 | |
1/20 | 4031 | 4.0114 | ||
1/5 | 100 | - | ||
0.9 | 1/10 | 430 | 3.9156 | |
1/20 | 1850 | 4.0345 |
-Error | Order | CPU(s) | ||
---|---|---|---|---|
1/20 | - | 9.94 | ||
0.25 | 1/40 | 1.2130 | 17.12 | |
1/80 | 1.2424 | 33.43 | ||
1/20 | - | 9.05 | ||
0.5 | 1/40 | 1.4823 | 16.98 | |
1/80 | 1.4898 | 37.28 | ||
1/20 | - | 12.59 | ||
0.75 | 1/40 | 1.7243 | 20.57 | |
1/80 | 1.7303 | 34.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abliz, Z.; Eskar, R.; Serik, M.; Huang, P. Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation. Fractal Fract. 2024, 8, 658. https://doi.org/10.3390/fractalfract8110658
Abliz Z, Eskar R, Serik M, Huang P. Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation. Fractal and Fractional. 2024; 8(11):658. https://doi.org/10.3390/fractalfract8110658
Chicago/Turabian StyleAbliz, Zulayat, Rena Eskar, Moldir Serik, and Pengzhan Huang. 2024. "Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation" Fractal and Fractional 8, no. 11: 658. https://doi.org/10.3390/fractalfract8110658
APA StyleAbliz, Z., Eskar, R., Serik, M., & Huang, P. (2024). Compact ADI Difference Scheme for the 2D Time Fractional Nonlinear Schrödinger Equation. Fractal and Fractional, 8(11), 658. https://doi.org/10.3390/fractalfract8110658