Detection of Short-Section Ballast Breakdown in Track: A Fractal Analysis Approach with Reduced Window Size
Abstract
:1. Introduction
2. Methodology
2.1. Fractal Analysis for Track Condition Description
- •
- Let denote the track’s longitudinal level as a function of position
- •
- Step 1: Given a position, , we span a window of length around it i.e.,
- •
- Step 2: Subdivide the window into subsegments with a length of (originally referred to as λ, but renamed to for clarity)
- •
- Step 3: For different values of , calculate the polygonal length
- •
- •
- Step 5: Apply a linear regression in the Richardson plot and use its slope to approximate dimension of in the window
2.2. Modified Fractal Analysis with REDuced Window Size (FRED)
3. Results
3.1. Investigation of Changes in Ballast Bed Condition Using FRED
- •
- PR—Comparison between the last two measurement runs prior to ballast renewal.
- •
- BA—Comparison between the measurement runs before and after ballast renewal.
- •
- PO—Comparison between the last two measurement runs after ballast bed renewal (post-renewal).
3.1.1. PR Comparison
3.1.2. BA Comparison
3.1.3. PO Comparison
3.2. Determination of the Optimal Window Size
3.3. Comparison Between the Different Model Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landgraf, M. Smart Data for Sustainable Railway Asset Management. Verlag der Technischen Universität Graz: Graz, Austria, 2018. [Google Scholar]
- EN 13848-5; Railway Applications-Track-Track Geometry Quality-Part 5: Geometric Quality Levels. European Committee for Standardization: Brussels, Belgium, 2008.
- Vale, C.; Simões, M.L. Prediction of Railway Track Condition for Preventive Maintenance by Using a Data-Driven Approach. Infrastructures 2022, 7, 34. [Google Scholar] [CrossRef]
- Elkhoury, N.; Hitihamillage, L.; Moridpour, S.; Robert, D. Degradation Prediction of Rail Tracks: A Review of the Existing Literature. Open Transp. J. 2018, 12, 88–104. [Google Scholar] [CrossRef]
- Sadeghi, J.; Motieyan-Najar, M.E.; Zakeri, J.A.; Yousefi, B.; Mollazadeh, M. Improvement of railway ballast maintenance approach, incorporating ballast geometry and fouling conditions. J. Appl. Geophys. 2018, 151, 263–273. [Google Scholar] [CrossRef]
- Soleimanmeigouni, I.; Ahmadi, A.; Kumar, U. Track geometry degradation and maintenance modelling: A review. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2018, 232, 73–102. [Google Scholar] [CrossRef]
- Caetano, L.F.; Teixeira, P.F. Predictive Maintenance Model for Ballast Tamping. J. Transp. Eng. 2016, 142, 04016006. [Google Scholar] [CrossRef]
- Bakhtiary, A.; Zakeri, J.A.; Mohammadzadeh, S. An opportunistic preventive maintenance policy for tamping scheduling of railway tracks. Int. J. Rail Transp. 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Murray, M.; Ferreira, L. Modelling Rail Track Performance: An Integrated Approach. ICE Proc. Transp. 2000, 141, 187–194. [Google Scholar] [CrossRef]
- Zhou, Y.; Schlake, B.; Hansmann, F.; Huang, H.; Antony, B.; Zeng, K.; Zhang, C. Particle motion and stress response interacted with machine activity: Railroad tamping strategy. Transp. Geotech. 2024, 45, 101188. [Google Scholar] [CrossRef]
- Barbir, O.; Adam, D.; Kopf, F.; Pistrol, J.; Antony, B.; Auer, F. In-situ ballast condition assessment by tamping machine integrated measurement system. IOP Conf. Ser Earth Environ. Sci. 2021, 710, 12071. [Google Scholar] [CrossRef]
- Offenbacher, S.; Antony, B.; Barbir, O.; Auer, F.; Landgraf, M. Evaluating the applicability of multi-sensor equipped tamping machines for ballast condition monitoring. Measurement 2021, 172, 108881. [Google Scholar] [CrossRef]
- Nielsen, J.C.O.; Berggren, E.G.; Hammar, A.; Jansson, F.; Bolmsvik, R. Degradation of railway track geometry—Correlation between track stiffness gradient and differential settlement. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2020, 234, 108–119. [Google Scholar] [CrossRef]
- Landgraf, M.; Hansmann, F.; Marschnig, S.; Veit, P. Track Geometry and Substructure Condition—A provable Correlation? Georail 2014, 2014, 623–632. [Google Scholar]
- Berawi, A.R.B. Improving Railway Track Maintenance Using Power Spectral Density (PSD). Dissertation, Falcudade de Engenharia, Universidade do Porto, Porto, Portugal, 2013. [Google Scholar]
- Fellinger, M.; Neuhold, J.; Marschnig, S. Ballast Condition Monitoring for Turnouts Using Power Spectral Density. J. Transp. Eng. Part A Syst. 2020, 146, 04020099. [Google Scholar] [CrossRef]
- Hyslip, J.P. Fractal Analysis of Track Geometry Data. Transp. Res. Rec. 2002, 1785, 50–57. [Google Scholar] [CrossRef]
- Youngworth, R.N.; Gallagher, B.B.; Stamper, B.L. An overview of power spectral density (PSD) calculations. calculations. Opt. Manuf. Test. VI 2005, 5869, 206–216. [Google Scholar] [CrossRef]
- Sussmann, T.R.; Selig, E.T.; Hyslip, J.P. Railway track condition indicators from ground penetrating radar. NDT E Int. 2003, 36, 157–167. [Google Scholar] [CrossRef]
- Oralbekova, Z. RESULTS OF EXPERIMENTAL GEORADAR SURVEYS OF RAILWAY SECTIONS. Geomate 2023, 25, 189–196. [Google Scholar] [CrossRef]
- Landgraf, M.; Hansmann, F. Fractal analysis as an innovative approach for evaluating the condition of railway tracks. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 233, 596–605. [Google Scholar] [CrossRef]
- Hyslip, J. Fractal Analysis of Geometry Data for Railway Track Condition Assessment. Dissertation, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA, 2002. [Google Scholar]
- Kaye, B.H. A Random Walk Through Fractal Dimensions; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Liang, Z.; Feng, Z.; Guangxiang, X. Comparison of Fractal Dimension Calculation Methods for Channel Bed Profiles. Procedia Eng. 2012, 28, 252–257. [Google Scholar] [CrossRef]
- Klinkenberg, B. A Review of Methods Used to Determine the Fractal Dimension of Linear Features. Math. Geol. 1994, 26, 23–46. [Google Scholar] [CrossRef]
- Filler, A. Fraktale. Humboldt-Universität zu Berlin 2019. Available online: https://didaktik.mathematik.hu-berlin.de/user/Fraktale.pdf (accessed on 9 October 2024).
- Selig, E.T.; Waters, J.M. Track Geotechnology and Substructure Management; Telford: London, UK, 1994. [Google Scholar]
- Landgraf, M. Zustandsbeschreibung des Fahrwegs der Eisenbahn—Von der Messdatenanalyse zum Anlagenmanagement. Doctoral Dissertation, Institut für Eisenbahnwesen und Verkehrswirtschaft, Technische Universität Graz, Graz, Austria, 2016. [Google Scholar]
- Hansmann, F. Innovative Messdatenanalyse—Ein Beitrag für ein nachhaltiges Anlagenmanagement Gleis. Doctoral Dissertation, Institut für Eisenbahnwesen und Verkehrswirtschaft, Technische Universität Graz, Graz, Austria, 2015. [Google Scholar]
- Landgraf, M.; Enzi, M. Smart Data for a Pro-active Railway Asset Management. In Proceedings of the 7th Transport Research Arena TRA 2018, Vienna, Austria, 16–19 April 2018. [Google Scholar]
- Landgraf, M.; Hansmann, F. Smart track geometry analyses as key to sustainability. In Proceedings of the International Heavy Haul Conference: IHHA 2017—Cape Town Conference Center, Kaptstadt, South Africa, 4–7 September 2017. [Google Scholar]
- Mandelbrot, B. How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Fischler, M.; Bolles, R.C. Random Sample Consensus. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Oppermann, A. Accuracy, Precision, Recall, F1-Score und Specificity. 2021. Available online: https://artemoppermann.com/de/accuracy-precision-recall-f1-score-und-specificity/ (accessed on 9 October 2024).
FRED | Hansmann/Landgraf | ||||||||
---|---|---|---|---|---|---|---|---|---|
Input | Longitudinal Level (3–25 m) | Longitudinal Level (3–70 m) | |||||||
Window size W [m] | 50 | 25 | 20 | 15 | 12.5 | 10 | 8 | 6.25 | 150 |
, min [m] | s | 0.75 | |||||||
max [m] | 50 | 25 | 20 | 15 | 12.5 | 10 | 8 | 6.25 | 30 |
Interval [m] | 1 m | 2.5 m | |||||||
Number of subsegments | 66 | 33 | 26 | 20 | 16 | 13 | 10 | 8 | 73 |
Standard Deviation | |||
---|---|---|---|
Window Size
[meters] |
SigmaH Threshold |
F1 Score (Training Set) |
F1 Score (Validation Set) |
6.25 | 4.5 | 0.8571 | 0.6538 |
8 | 5.25 | 0.8514 | 0.6818 |
10 | 5.25 | 0.8378 | 0.6667 |
12.5 | 5 | 0.8322 | 0.6667 |
15 | 4.75 | 0.8322 | 0.6977 |
20 | 4 | 0.8101 | 0.7111 |
25 | 4.25 | 0.8108 | 0.6818 |
50 | 3.5 | 0.7568 | 0.6383 |
Fractal Values | |||
---|---|---|---|
Window Size [meters] |
Fractal Value Threshold |
F1 Score (Training Set) |
F1 Score (Validation Set) |
6.25 | 33 | 0.8645 | 0.7547 |
8 | 32 | 0.8742 | 0.7692 |
10 | 25 | 0.8442 | 0.7843 |
12.5 | 25 | 0.8533 | 0.7917 |
15 | 25 | 0.8400 | 0.7660 |
20 | 20 | 0.8400 | 0.7451 |
25 | 17 | 0.8289 | 0.7925 |
50 | 13 | 0.7516 | 0.7917 |
Fractal Values + Temporal Changes | ||||
---|---|---|---|---|
Window Size [meters] |
Fractal Value Threshold |
Temporal Changes Threshold |
F1 Score (Training Set) |
F1 Score (Validation Set) |
6.25 | 33 | 0 | 0.8645 | 0.7547 |
8 | 32 | 0 | 0.8742 | 0.7692 |
10 | 5 | 2.5 | 0.8519 | 0.7170 |
12.5 | 25 | 1.5 | 0.8591 | 0.7917 |
15 | 7 | 1.75 | 0.8690 | 0.7170 |
20 | 18 | 2 | 0.8552 | 0.6939 |
25 | 16 | 1.75 | 0.8378 | 0.7234 |
50 | 6 | 0.75 | 0.7889 | 0.7119 |
Fractal Values | Standard Deviation (Reference) | Fractal Values + Temporal Changes | |||||
---|---|---|---|---|---|---|---|
Window Size [meters] | THR | F1 | THR | F1 | THR Frac. | THR Temp. | F1 |
6.25 | 33 | 0.7547 | 4.5 | 0.6538 | 33 | 0 | 0.7547 |
8 | 32 | 0.7692 | 5.25 | 0.6818 | 32 | 0 | 0.7692 |
10 | 25 | 0.7843 | 5.25 | 0.6667 | 5 | 2.5 | 0.7170 |
12.5 | 25 | 0.7917 | 5 | 0.6667 | 25 | 1.5 | 0.7917 |
15 | 25 | 0.7660 | 4.75 | 0.6977 | 7 | 1.75 | 0.7170 |
20 | 20 | 0.7451 | 4 | 0.7111 | 18 | 2 | 0.6939 |
25 | 17 | 0.7925 | 4.25 | 0.6818 | 16 | 1.75 | 0.7234 |
50 | 13 | 0.7917 | 3.5 | 0.6383 | 6 | 0.75 | 0.7119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korenjak, A.K.; Offenbacher, S.; Marschnig, S. Detection of Short-Section Ballast Breakdown in Track: A Fractal Analysis Approach with Reduced Window Size. Fractal Fract. 2024, 8, 664. https://doi.org/10.3390/fractalfract8110664
Korenjak AK, Offenbacher S, Marschnig S. Detection of Short-Section Ballast Breakdown in Track: A Fractal Analysis Approach with Reduced Window Size. Fractal and Fractional. 2024; 8(11):664. https://doi.org/10.3390/fractalfract8110664
Chicago/Turabian StyleKorenjak, Andrea Katharina, Stefan Offenbacher, and Stefan Marschnig. 2024. "Detection of Short-Section Ballast Breakdown in Track: A Fractal Analysis Approach with Reduced Window Size" Fractal and Fractional 8, no. 11: 664. https://doi.org/10.3390/fractalfract8110664
APA StyleKorenjak, A. K., Offenbacher, S., & Marschnig, S. (2024). Detection of Short-Section Ballast Breakdown in Track: A Fractal Analysis Approach with Reduced Window Size. Fractal and Fractional, 8(11), 664. https://doi.org/10.3390/fractalfract8110664