Boundary Control-Based Finite-Time Passivity for Fractional Spatiotemporal Directed Networks with Multiple Weights
Abstract
:1. Introduction
2. Preliminaries and Network Model
2.1. Preliminaries
2.2. Network Model
3. Main Results
3.1. FT Passivity
3.2. FT Synchronization
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.J.; Zhang, S.C.; Szucs, G.; Wang, Y.G. Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method. Reliab. Eng. Syst. Saf. 2024, 244, 109956. [Google Scholar] [CrossRef]
- Qian, X.D.; Chen, Z.Z. Research on social network clustering synchronization based on improved coupling time-delay complex network synchronization model. For. Chem. Rev. 2022, 191, 48–65. [Google Scholar]
- Sergiou, C.; Lestas, M.; Antoniou, P.; Liaskos, C.; Pitsillides, A. Complex systems: A communication networks perspective towards 6G. IEEE Access 2020, 8, 89007–89030. [Google Scholar] [CrossRef]
- Shang, D.Y.; Li, X.P.; Yin, M.; Li, F.J. Dynamic modeling and fuzzy adaptive control strategy for space flexible robotic arm considering joint flexibility based on improved sliding mode controller. Adv. Space Res. 2022, 70, 3520–3539. [Google Scholar] [CrossRef]
- Yan, X.; Yang, C.D.; Yang, Y.Q.; Wang, X.; Li, Z.X.; Huang, T.W. Boundary control for synchronization of fractional-order complex spatiotemporal networks based on PDEs with multiple delays and its application in image encryption. J. Frankl. Inst. 2023, 360, 5267–5291. [Google Scholar] [CrossRef]
- Zhang, X.S.; Li, Z.P.; Wang, R.S.; Wang, Y. A combinatorial model and algorithm for globally searching community structure in complex networks. J. Comb. Optim. 2012, 23, 425–442. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Hirasawa, K. Spatiotemporal traffic network analysis: Technology and applications. Knowl. Inf. Syst. 2019, 60, 25–61. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Ye, Y.; Arenas, A.; Gómez, S.; Zhao, Y. Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks. Chaos Solitons Fractals 2023, 174, 113805. [Google Scholar] [CrossRef]
- Wei, L.; Luo, Y.; Wang, M.; Cai, Y.Y.; Su, S.L.; Li, B.Z.; Ji, H.Y. Multiscale identification of urban functional polycentricity for planning implications: An integrated approach using geo-big transport data and complex network modeling. Habitat Int. 2020, 97, 102134. [Google Scholar] [CrossRef]
- Li, J.D.; Qi, H.; Zhang, M.Y.; Huo, J.H.; Liu, J.S.; Rao, Y.H. A modeling method for elastic-viscous-plastic material with fractal structure and its solution. Acta Mech. Sin. 2024, 40, 423263. [Google Scholar] [CrossRef]
- Mendes, E.M.; Salgado, G.H.; Aguirre, L.A. Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 237–247. [Google Scholar] [CrossRef]
- Rossikhin, Y.A.; Shitikova, M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997, 50, 15–67. [Google Scholar] [CrossRef]
- Luchko, Y.F.; Rivero, M.; Trujillo, J.J.; Velasco, M.P. Fractional models, non-locality, and complex systems. Comput. Math. Appl. 2010, 59, 1048–1056. [Google Scholar] [CrossRef]
- Matlob, M.A.; Jamali, Y. The application of fractional derivative viscoelastic models in the finite element method: Taking several common models as examples. Fractal Fract. 2024, 8, 103. [Google Scholar] [CrossRef]
- Guyomar, D.; Ducharne, B.; Sebald, G.; Audiger, D. Fractional derivative operators for modeling the dynamic polarization behavior as a function of frequency and electric field amplitude. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 437–443. [Google Scholar] [CrossRef]
- Huang, R.; Pu, Y. A novel fractional model and its application in network security situation assessment. Fractal Fract. 2024, 8, 550. [Google Scholar] [CrossRef]
- Bevelevich, V. Classical Network Synthesis; Van Nostrand: New York, NY, USA, 1968. [Google Scholar]
- Xu, S.; Liu, H.; Han, Z. The passivity of uncertain fractional-order neural networks with time-varying delays. Fractal Fract. 2022, 6, 375. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Li, F.; Wang, J.; Shen, H. Mixed H∞ and passive consensus of Markov jump multi-agent systems under DoS attacks with general transition probabilities. J. Frankl. Inst. 2023, 360, 5375–5391. [Google Scholar] [CrossRef]
- Fujimoto, K.; Baba, T.; Sakata, N.; Maruta, I. A passivity-based sliding mode controller for a class of electro-mechanical systems. IEEE Control Syst. Lett. 2021, 6, 1208–1213. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Wen, D.L.; Shen, M.Q.; Li, L.W.; Zhang, Z.H. Novel passivity and dissipativity criteria for discrete-time fractional generalized delayed Cohen-Grossberg neural networks. Commun. Nonlinear Sci. Numer. Simul. 2024, 133, 107960. [Google Scholar] [CrossRef]
- Zeng, Z.X.; Ding, Z.G.; Zhang, H.; Wang, L.M.; Wang, L.H. New results on passivity of fractional-order uncertain neural networks. Neurocomputing 2019, 351, 51–59. [Google Scholar]
- Huyen, N.T.T.; Sau, N.H.; Thuan, M.V. LMI conditions for fractional exponential stability and passivity analysis of uncertain Hopfield conformable fractional-order neural networks. Neural Process. Lett. 2022, 54, 1333–1350. [Google Scholar] [CrossRef]
- Lin, S.R.; Huang, Y.L.; Ren, S.Y. Event-triggered passivity and synchronization of delayed multiple-weighted coupled reaction-diffusion neural networks with non-identical nodes. Neural Netw. 2020, 121, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, K.; Anbuvithya, R.; Sakthivel, R.; Park, J.H.; Prakash, P. Non-fragile H∞ synchronization of memristor-based neural networks using passivity theory. Neural Netw. 2016, 74, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Liu, X.W.; Huang, Y.L. Event-triggered pinning control for passivity and synchronization of directly coupled delayed reaction-diffusion neural networks. Int. J. Adapt. Control Signal Process. 2024, 38, 558–579. [Google Scholar] [CrossRef]
- Yang, Y.N.; Hua, C.C.; Guan, X.P. Finite time control design for bilateral teleoperation system with position synchronization error constrained. IEEE Trans. Cybern. 2015, 46, 609–619. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2000, 38, 751–766. [Google Scholar] [CrossRef]
- Anbalagan, P.; Ramachandran, R.; Alzabut, J.; Hincal, E.; Niezabitowski, M. Improved results on finite-time passivity and synchronization problem for fractional-order memristor-based competitive neural networks: Interval matrix approach. Fractal Fract. 2022, 6, 36. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Ye, R.Y.; Zhang, W.W.; Zhang, H.M. Finite time passivity analysis for Caputo fractional BAM reaction-diffusion delayed neural networks. Math. Comput. Simul. 2023, 208, 424–443. [Google Scholar] [CrossRef]
- Xing, X.F.; Wu, H.Q.; Cao, J.D. Event-triggered impulsive control for synchronization in finite time of fractional-order reaction-diffusion complex networks. Neurocomputing 2023, 557, 126703. [Google Scholar] [CrossRef]
- Shanmugam, S.; Narayanan, G.; Rajagopal, K.; Ali, M.S. Finite-time synchronization of complex-valued neural networks with reaction-diffusion terms: An adaptive intermittent control approach. Neural Comput. Appl. 2024, 36, 7389–7404. [Google Scholar] [CrossRef]
- Han, J. Finite-time passivity and synchronization for a class of fuzzy inertial complex-valued neural networks with time-varying delays. Axioms 2024, 13, 39. [Google Scholar] [CrossRef]
- Huang, Y.L.; Wu, F. Finite-time passivity and synchronization of coupled complex-valued memristive neural networks. Inf. Sci. 2021, 580, 775–800. [Google Scholar] [CrossRef]
- Kowsalya, P.; Kathiresan, S.; Kashkynbayev, A.; Rakkiyappan, R. Fixed-time synchronization of delayed multiple inertial neural network with reaction-diffusion terms under cyber–physical attacks using distributed control and its application to multi-image encryption. Neural Netw. 2024, 180, 106743. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Liu, X.W. Passivity and control for multiweighted and directed fractional-order network systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 1733–1746. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, C.G.; Liu, X.L.; Huang, L.N.; Huang, T.W. Passivity for multiadaptive coupled fractional-order reaction-diffusion neural networks. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1350–1361. [Google Scholar] [CrossRef]
- Sakthivel, R.; Kwon, O.M.; Park, M.J.; Sakthivel, R. Event-triggered synchronization control for fractional-order IT2 fuzzy multi-weighted complex dynamical networks with deception attacks. Commun. Nonlinear Sci. Numer. Simul. 2024, 136, 108091. [Google Scholar] [CrossRef]
- Wei, C.; Wang, X.; Hui, M.; Zeng, Z. Quasi-synchronization of fractional multiweighted coupled neural networks via aperiodic intermittent control. IEEE Trans. Cybern. 2023, 54, 1671–1684. [Google Scholar] [CrossRef]
- Liu, C.G.; Wang, J.L.; Wu, H.N. Finite-time passivity for coupled fractional-order neural networks with multistate or multiderivative couplings. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 5976–5987. [Google Scholar] [CrossRef]
- Yang, S.Y.; Tang, H.A.; Hu, X.F.; Xia, Q.L.; Wang, L.D.; Duan, S.K. Adaptive finite-time passivity and synchronization of coupled fractional-order memristive neural networks with multi-state couplings. Neurocomputing 2024, 579, 127380. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, X.X.; Wen, G.G.; Chen, Y.W.; Wu, H.N. Passivity and finite-time passivity for multi-weighted fractional-order complex networks with fixed and adaptive couplings. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Dubljevic, S.; Christofides, P.D. Predictive control of parabolic PDEs with boundary control actuation. Chem. Eng. Sci. 2006, 61, 6239–6248. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, W.J.; Liu, X.Z.; Wu, K.N. Passivity of fractional reaction-diffusion systems. Appl. Math. Comput. 2024, 476, 128764. [Google Scholar] [CrossRef]
- Wu, K.N.; Wang, J.; Lim, C.C. Synchronization of stochastic reaction-diffusion systems via boundary control. Nonlinear Dyn. 2018, 94, 1763–1773. [Google Scholar] [CrossRef]
- Sun, Y.T.; Hu, C.; Yu, J.; Shi, T.T. Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control. Appl. Math. Comput. 2023, 450, 127982. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Wu, H.N.; Wang, J.W.; Li, H.X. Fuzzy boundary control design for a class of nonlinear parabolic distributed parameter system. IEEE Trans. Fuzzy Syst. 2013, 22, 642–652. [Google Scholar] [CrossRef]
- Hou, T.Q.; Yu, J.; Hu, C.; Jiang, H.J. Finite-time synchronization of fractional-order complex-variable dynamic networks. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 4297–4307. [Google Scholar] [CrossRef]
- Lv, Y.J.; Hu, C.; Yu, J.; Jiang, H.J.; Huang, T.W. Edge-based fractional-order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms. IEEE Trans. Cybern. 2018, 50, 1582–1594. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, J.L.; Zhang, Y.; Fan, S.Q. Finite-time passivity of multiple weighted coupled uncertain neural networks with directed and undirected topologies. Neurocomputing 2019, 367, 217–225. [Google Scholar] [CrossRef]
- Jiao, X.H.; Guan, X.P. Analysis and Design of Nonlinear Systems; Publishing House of Electronics Industry: Beijing, China, 2008. [Google Scholar]
- Xu, Y.; Liu, W.X.; Wu, Y.B.; Li, W.X. Finite-time synchronization of fractional-order fuzzy time-varying coupled neural networks subject to reaction-diffusion. IEEE Trans. Fuzzy Syst. 2023, 31, 3423–3432. [Google Scholar] [CrossRef]
- Luo, Y.P.; Ling, Z.M.; Yao, Y.J. Finite time synchronization for reactive diffusion complex networks via boundary control. IEEE Access 2019, 7, 68628–68635. [Google Scholar] [CrossRef]
- Wang, H.; Gu, Y.; Zhang, X.; Yu, Y. Stability and synchronization of fractional-order reaction-diffusion inertial time-delayed neural networks with parameters perturbation. Neural Netw. 2024, 179, 106564. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, K.; Renugadevi, T.; Nidhi, A.S.; Ma, Y.K.; Cao, J.D. Boundary state feedback control for semilinear fractional-order reaction diffusion systems. Chaos Solitons Fractals 2022, 162, 112428. [Google Scholar] [CrossRef]
- Yang, Y.P.; Hu, C.; Yu, J.; Jiang, H.J.; Wen, S.P. Synchronization of fractional-order spatiotemporal complex networks with boundary communication. Neurocomputing 2021, 450, 197–207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Hu, C.; Yu, J. Boundary Control-Based Finite-Time Passivity for Fractional Spatiotemporal Directed Networks with Multiple Weights. Fractal Fract. 2024, 8, 676. https://doi.org/10.3390/fractalfract8110676
Zhao L, Hu C, Yu J. Boundary Control-Based Finite-Time Passivity for Fractional Spatiotemporal Directed Networks with Multiple Weights. Fractal and Fractional. 2024; 8(11):676. https://doi.org/10.3390/fractalfract8110676
Chicago/Turabian StyleZhao, Li, Cheng Hu, and Juan Yu. 2024. "Boundary Control-Based Finite-Time Passivity for Fractional Spatiotemporal Directed Networks with Multiple Weights" Fractal and Fractional 8, no. 11: 676. https://doi.org/10.3390/fractalfract8110676
APA StyleZhao, L., Hu, C., & Yu, J. (2024). Boundary Control-Based Finite-Time Passivity for Fractional Spatiotemporal Directed Networks with Multiple Weights. Fractal and Fractional, 8(11), 676. https://doi.org/10.3390/fractalfract8110676