On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
- (a)
- Suppose is a non-zero, non-negative and super multiplicative function;
- (b)
- Suppose , , and .
3. Main Results
- (a)
- (b)
- (c)
- (d)
4. Schur Inequality
5. Hermite–Hadamard Inequalities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rockafellar, R.T. Convex Analysis; Princeton university Press: Princeton, NJ, USA, 1997; Volume 11. [Google Scholar]
- Magaril-II’yaev, G.G.; Tikhomirov, V.M. Convex Analysis: Theory and Applications; American Mathematical Society: Providence, RI, USA, 2003; Volume 222. [Google Scholar]
- Bertsekas, D.; Nedic, A.; Ozdaglar, A. Convex Analysis and Optimization; Athena Scientific: Nashua, NH, USA, 2003; Volume 1. [Google Scholar]
- Liang, J.; Monteiro, R.D. A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems. Math. Oper. Res. 2024, 49, 832–855. [Google Scholar] [CrossRef]
- Tamura, A. Applications of discrete convex analysis to mathematical economics. Publ. Res. Inst. Math. Sci. 2004, 40, 1015–1037. [Google Scholar] [CrossRef]
- Abdelkader, A.; Mount, D.M. Convex Approximation and the Hilbert Geometry. In Proceedings of the 2024 Symposium on Simplicity in Algorithms, Alexandria, VA, USA, 8–10 January 2024; pp. 286–298. [Google Scholar]
- Kermausuor, S.; Nwaeze, E.R. Mathematical Inequalities in Fractional Calculus and Applications. Fractal Fract. 2024, 8, 471. [Google Scholar] [CrossRef]
- Nosheen, A.; Khan, K.A.; Bukhari, M.H.; Kahungu, M.K.; Aljohani, A.F. On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p,h)-convex functions. PLoS ONE 2024, 19, e0311386. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense. AIMS Math. 2021, 6, 7719–7732. [Google Scholar] [CrossRef]
- El Farissi, A. Simple proof and refinement of Hermite-Hadamard inequality. J. Math. Inequalities 2010, 4, 365–369. [Google Scholar] [CrossRef]
- Fahad, A.; Wang, Y.; Butt, S.I. Jensen-Mercer and Hermite-Hadamard-Mercer Type Inequalities for GA-h-Convex Functions and Its Subclasses with Applications. Mathematics 2023, 11, 278. [Google Scholar] [CrossRef]
- Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032. [Google Scholar]
- Li, C.; Deng, W. Remarks on fractional derivatives. Appl. Math. Comput. 2007, 187, 777–784. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Younas, M.; Ahmad, H.; Yao, S.W. Fractal Hadamard-Mercer-type inequalities with applications. Fractals 2022, 30, 2240055. [Google Scholar] [CrossRef]
- Kashuri, A.; Sahoo, S.K.; Mohammed, P.O.; Al-Sarairah, E.; Chorfi, N. Novel inequalities for subadditive functions via tempered fractional integrals and their numerical investigations. AIMS Math. 2024, 9, 13195–13210. [Google Scholar] [CrossRef]
- Mehmood, S.; Mohammed, P.O.; Kashuri, A.; Chorfi, N.; Mahmood, S.A.; Yousif, M.A. Some New Fractional Inequalities Defined Using cr-Log-h-Convex Functions and Applications. Symmetry 2024, 16, 407. [Google Scholar] [CrossRef]
- Nosheen, A.; Tariq, M.; Khan, K.A.; Shah, N.A.; Chung, J.D. On Caputo Fractional Derivatives and Caputo-Fabrizio Integral Operators via (s,m)-Convex Functions. Fractal Fract. 2023, 7, 187. [Google Scholar] [CrossRef]
- Kang, S.M.; Farid, G.; Nazeer, W.; Tariq, B. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions. J. Inequalities Appl. 2018, 2018, 119. [Google Scholar] [CrossRef] [PubMed]
- Angulo, H.; Giménez, J.; Moros, A.M.; Nikodem, K. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
- Lara, T.; Merentes, N.; Quintero, R.; Rosales, E. On Strongly m-convex functions. Math. Aeterna 2015, 5, 521–535. [Google Scholar]
- Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Hermite Hadamard inequalities for modified h-convex functions. Transylv. J. Math. Mech. 2014, 6, 1–10. [Google Scholar]
- Merentes, N.; Nikodem, K. Remarks on strongly convex functions. Aequationes Math. 2010, 80, 193–199. [Google Scholar] [CrossRef]
- Fang, Z.B.; Shi, R. On the (p,h)-convex function and some integral inequalities. J. Inequalities Appl. 2014, 2014, 45. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. The Minkowski’s inequalities via ψ-Riemann–Liouville fractional integral operators. Rend. Circ. Mat. Palermo Ser. 2 2021, 70, 893–906. [Google Scholar] [CrossRef]
- Askey, R.A.; Roy, R. Chapter 5, Gamma function. In NIST Handbook of Mathematical Functions; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010; pp. 135–147. [Google Scholar]
- Breaz; Yildiz, D.; Cotirla, C.; Rahman, L.I.; Yergoz, G.B. New Hadamard type inequalities for modified h-convex functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Zakir, S.U. The Strong Convex Functions and Related Inequalities. J. Funct. Spaces 2022, 2022, 4056201. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Tariq, B.; Waheed, A. On Hadamard type inequalities for m-convex functions via fractional integrals. J. Inequalities Spec. Funct. 2016, 7, 150–167. [Google Scholar]
- Farid, G.; Akbar, S.B.; Rathour, L.; Mishra, L.N.; Mishra, V.N. Riemann-Liouville fractional versions of Hadamard inequality for strongly m-convex functions. Int. J. Anal. Appl. 2022, 20, 5. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koam, A.N.A.; Nosheen, A.; Khan, K.A.; Bukhari, M.H.; Ahmad, A.; Alatawi, M.S. On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions. Fractal Fract. 2024, 8, 680. https://doi.org/10.3390/fractalfract8120680
Koam ANA, Nosheen A, Khan KA, Bukhari MH, Ahmad A, Alatawi MS. On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions. Fractal and Fractional. 2024; 8(12):680. https://doi.org/10.3390/fractalfract8120680
Chicago/Turabian StyleKoam, Ali N. A., Ammara Nosheen, Khuram Ali Khan, Mudassir Hussain Bukhari, Ali Ahmad, and Maryam Salem Alatawi. 2024. "On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions" Fractal and Fractional 8, no. 12: 680. https://doi.org/10.3390/fractalfract8120680
APA StyleKoam, A. N. A., Nosheen, A., Khan, K. A., Bukhari, M. H., Ahmad, A., & Alatawi, M. S. (2024). On Riemann–Liouville Integral via Strongly Modified (h,m)-Convex Functions. Fractal and Fractional, 8(12), 680. https://doi.org/10.3390/fractalfract8120680