Leader-Following Formation Control for Discrete-Time Fractional Stochastic Multi-Agent Systems by Event-Triggered Strategy
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- Pinning controllers and the corresponding sufficient conditions are provided to achieve mean square pinning consensus in the fractional stochastic networks.
- (4)
2. Preliminaries
3. Problem Formulation
4. Main Result
5. Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olfati, S.R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems. Proc. IEEE 2007, 95, 215–233. [Google Scholar] [CrossRef]
- Olfati, S. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control 2006, 51, 401–420. [Google Scholar] [CrossRef]
- Wu, B.F.; Peng, Z.X.; Wen, G.G.; Yang, S.C.; Huang, T.W. Sampling-Optimization-Based Adaptive Formation Tracking with Trajectory Protection. IEEE Syst. J. 2023, 17, 6449–6459. [Google Scholar]
- Liu, Y.; Li, Y.M. Application of Inverse Optimal Formation Control for Euler-Lagrange Systems. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5655–5662. [Google Scholar] [CrossRef]
- Huang, F.P.; Duan, M.M.; Su, H.F.; Zhu, S.Y. Distributed Optimal Formation Control of Second-Order Multiagent Systems with Obstacle Avoidance. IEEE Control Syst. Lett. 2023, 7, 2647–2652. [Google Scholar] [CrossRef]
- Zhang, J.X.; Fu, Y.; Fu, J. Adaptive Finite-Time Optimal Formation Control for Second-Order Nonlinear Multiagent Systems. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 6132–6144. [Google Scholar] [CrossRef]
- Wu, W.; Tong, S.C. Collision-Free Adaptive Fuzzy Formation Control for Stochastic Nonlinear Multiagent Systems. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 5454–5465. [Google Scholar] [CrossRef]
- Su, H.; Zhang, B.L.; Zhou, J.; Xue, J.; Zheng, Y.S.; Ma, H. Collision-Risk-Based Event-Triggered Optimal Formation Control for Mobile Multiagent Systems Under Incomplete Information Conditions. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 4888–4898. [Google Scholar] [CrossRef]
- Zhao, J.N.; Li, X.M.; Yu, X.; Wang, H.S. Finite-Time Cooperative Control for Bearing-Defined Leader-Following Formation of Multiple Double-Integrators. IEEE Trans. Cybern. 2022, 52, 13363–13372. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.L.; Zhang, K.; Jiang, B. Fixed-Time Fault-Tolerant Formation Control for a Cooperative Heterogeneous Multiagent System With Prescribed Performance. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 462–474. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zhang, H.J.; Wang, Y.C.; Mu, Y.F. Time-varying output formation-containment control for homogeneous/heterogeneous descriptor fractional-order multi-agent. Inf. Sci. 2021, 567, 146–166. [Google Scholar] [CrossRef]
- Cajo, R.; Guinaldo, M.; Fabregas, E.; Dormido, S.; Plaza, D.; De Keyser, R.; Ionescu, C. Distributed Formation Control for Multiagent Systems Using a Fractional-Order Proportional–Integral Structure. IEEE Trans. Control Syst. Technol. 2021, 29, 2738–2745. [Google Scholar] [CrossRef]
- Liu, L.; Li, P.; Chen, W.; Qin, K.Y.; Qi, L. Distributed formation control of fractional-order multi-agent systems with relative damping and nonuniform time-delays. ISA Trans. 2019, 93, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.C.; Ren, W. Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping. Syst. Control Lett. 2021, 59, 233–240. [Google Scholar] [CrossRef]
- Wang, Y.G.; Zhang, J.; Wu, H.Q. Distributed Adaptive Mittag–Leffler Formation Control for Second-Order Fractional Multi-Agent Systems via Event-Triggered Control Strategy. Fractal Fract. 2022, 6, 380. [Google Scholar] [CrossRef]
- Zamani, H.; Johari Majd, V.; Khandani, K. Formation tracking control of fractional-order multi-agent systems with fixed-time convergence. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 1618–1629. [Google Scholar] [CrossRef]
- Wu, F.; Liu, M.; Feng, Z.Y.; Cao, X.B. Fractional-order sliding mode attitude coordinated control for spacecraft formation flying with unreliable wireless communication. IET Control Theory Appl. 2023, 17, 368–380. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, B.P.; Hamid, R.K.; Gao, C.C. Leader–follower sliding mode formation control of fractional-order multi-agent systems: A dynamic event-triggered mechanism. Neurocomputing 2023, 69, 126691. [Google Scholar] [CrossRef]
- Zamani, H.; Khandani, K.; Majd, V.J. Fixed-time sliding-mode distributed consensus and formation control of disturbed fractional-order multi-agent systems. ISA Trans. 2023, 138, 37–48. [Google Scholar]
- Jun, L.; Li, P.; Qi, L.; Chen, W.; Qin, K.Y. Distributed formation control of double-integrator fractional-order multi-agent systems with relative damping and nonuniform time-delays. J. Frankl. Inst. 2019, 356, 5122–5150. [Google Scholar]
- Gong, Y.F.; Wen, G.G.; Peng, Z.X.; Huang, T.W.; Chen, Y.W. Observer-Based Time-Varying Formation Control of Fractional-Order Multi-Agent Systems With General Linear Dynamics. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 82–86. [Google Scholar] [CrossRef]
- Wan, X.B.; Wang, Z.D.; Han, Q.L.; Wu, M. Finite-Time H ∞ State Estimation for Discrete Time-Delayed Genetic Regulatory Networks Under Stochastic Communication Protocols. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3481–3491. [Google Scholar] [CrossRef]
- Alsaadi, F.E.; Wang, Z.D.; Wang, D.; Alsaadi, F.E.; Alsaade, F.W. Recursive fusion estimation for stochastic discrete time-varying complex networks under stochastic communication protocol: The state-saturated case. Inf. Fusion 2020, 60, 11–19. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.D.; Chen, Y.; Sheng, W.G. Event-based adaptive neural tracking control for discrete-time stochastic nonlinear systems: A triggering threshold compensation strategy. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 1968–1981. [Google Scholar] [CrossRef]
- Hu, Z.P.; Shi, P.; Zhang, J.; Deng, F.Q. Control of discrete-time stochastic systems with packet loss by event-triggered approach. IEEE Trans. Syst. Man Cybern. Syst. 2018, 51, 755–764. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.D.; Ma, L.F. An event-triggered pinning control approach to synchronization of discrete-time stochastic complex dynamical networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5812–5822. [Google Scholar] [CrossRef]
- Ding, D.R.; Wang, Z.D.; Shen, B.; Wei, G.L. Event-triggered consensus control for discrete-time stochastic multi-agent systems: The input-to-state stability in probability. Automatica 2015, 62, 284–291. [Google Scholar] [CrossRef]
- Lin, P.; Jia, Y.M. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica 2009, 45, 2154–2158. [Google Scholar] [CrossRef]
- Gao, Y.P.; Ma, J.W.; Zuo, M.; Jiang, T.Q.; Du, J.P. EConsensus of discrete-time second-order agents with time-varying topology and time-varying delays. J. Frankl. Inst. 2012, 349, 2598–2608. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, S.Y.; Huang, W.; Gao, L.X. Leader-following consensus of discrete-time multi-agent systems with observer-based protocols. Neurocomputing 2013, 118, 334–341. [Google Scholar] [CrossRef]
- Liu, Z.X.; Li, Y.B.; Wang, F.Y.; Chen, Z.Q. Reduced-order observer-based leader-following formation control for discrete-time linear multi-agent systems. IEEE/CAA J. Autom. Sin. 2020, 8, 1715–1723. [Google Scholar] [CrossRef]
- Ren, G.J.; Yu, Y.G.; Wei, J.M.; Xu, C.H. Pinning event-triggered control for stochastic discrete-time complex networks with time-varying delay. IET Control Theory Appl. 2019, 13, 2207–2216. [Google Scholar] [CrossRef]
- Yuan, X.L.; Ren, G.J.; Yu, Y.G.; Sun, W.J. Mean-square pinning control of fractional stochastic discrete-time complex networks. J. Frankl. Inst. 2022, 359, 2663–2680. [Google Scholar] [CrossRef]
- Yang, D.S.; Yu, Y.G.; Hu, W.; Yuan, X.L.; Ren, G.J. Mean Square Asymptotic Stability of Discrete-Time Fractional Order Stochastic Neural Networks with Multiple Time-Varying Delays. Neural Process. Lett. 2023, 55, 9247–9268. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhang, H.; Wang, Z.P.; Yan, H.C. Reliable leader-following consensus of discrete-time semi-markovian jump multi-agent systems. IEEE Trans. Netw. Sci. Eng. 2023, 10, 3505–3518. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhang, Y.Y.; Zong, X.F. Stochastic leader-following consensus of discrete-time nonlinear multi-agent systems with multiplicative noises. J. Frankl. Inst. 2022, 359, 7753–7774. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; pp. 22–26. [Google Scholar]
- Li, T.; Zhang, J.F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Trans. Autom. Control 2010, 55, 2043–2057. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, W.B.; Fang, J.A.; He, G. Synchronisation of discrete-time complex networks with delayed heterogeneous impulses. IET Control Theory Appl. 2015, 9, 2648–2656. [Google Scholar] [CrossRef]
- Liu, P.; Kong, M.X.; Zeng, Z.G. Projective Synchronization Analysis of Fractional-Order Neural Networks With Mixed Time Delays. IEEE Trans. Cybern. 2022, 52, 6798–6808. [Google Scholar] [CrossRef]
- Si, L.Z.; Xiao, M.; Jiang, G.P.; Cheng, Z.S.; Song, Q.K.; Cao, J.D. Dynamics of Fractional-Order Neural Networks With Discrete and Distributed Delays. IEEE Access 2020, 8, 46071–46080. [Google Scholar] [CrossRef]
- Lv, S.S.; Pan, M.; Li, X.G.; Cai, W.Y.; Lan, T.Y.; Li, B.Q. Consensus Control of Fractional-Order Multi-Agent Systems With Time Delays via Fractional-Order Iterative Learning Control. IEEE Access 2019, 7, 159731–159742. [Google Scholar] [CrossRef]
- Liu, J.; Yang, G.B.; Zhou, N.; Qin, K.Y.; Chen, B.D.; Wu, Y.H.; Choi, K.S. Event-triggered consensus control based on maximum correntropy criterion for discrete-time multi-agent systems. Neurocomputing 2023, 545, 126323. [Google Scholar] [CrossRef]
- Zhuang, J.W.; Peng, S.G.; Wang, Y.H. Exponential consensus of stochastic discrete multi-agent systems under DoS attacks via periodically intermittent control: An impulsive framework. Appl. Math. Comput. 2022, 433, 127389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Yu, Y.; Ren, G. Leader-Following Formation Control for Discrete-Time Fractional Stochastic Multi-Agent Systems by Event-Triggered Strategy. Fractal Fract. 2024, 8, 246. https://doi.org/10.3390/fractalfract8050246
Wu J, Yu Y, Ren G. Leader-Following Formation Control for Discrete-Time Fractional Stochastic Multi-Agent Systems by Event-Triggered Strategy. Fractal and Fractional. 2024; 8(5):246. https://doi.org/10.3390/fractalfract8050246
Chicago/Turabian StyleWu, Jiawei, Yongguang Yu, and Guojian Ren. 2024. "Leader-Following Formation Control for Discrete-Time Fractional Stochastic Multi-Agent Systems by Event-Triggered Strategy" Fractal and Fractional 8, no. 5: 246. https://doi.org/10.3390/fractalfract8050246
APA StyleWu, J., Yu, Y., & Ren, G. (2024). Leader-Following Formation Control for Discrete-Time Fractional Stochastic Multi-Agent Systems by Event-Triggered Strategy. Fractal and Fractional, 8(5), 246. https://doi.org/10.3390/fractalfract8050246