Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels
Abstract
:1. Introduction and Preliminaries
- 1.
- and .
- 2.
- .
2. Main Results
2.1. Hermite–Hadamard Inequality
2.2. Midpoint-Type Inequalities
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- .
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- 5.
- .
2.3. Trapezoid-Type Inequalities
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- .
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- 5.
- .
3. Illustrative Example
- 1.
- 2.
- 3.
4. Some Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Hermite, C. Sur deux limites d’une integrale définie. Mathesis 1883, 3, 82. [Google Scholar]
- Kirmaci, U. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Kadakal, H. On refinements of some integral inequalities using improved power-mean integral inequalities. Numer. Methods Partial. Differ. Equ. 2020, 36, 1555–1565. [Google Scholar] [CrossRef]
- Dragomir, S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kavurmacı, H.; Avcı, M.; Özdemir, M.E. New inequalities of Hermite-Hadamard type for convex functions with applications. J. Inequal. Appl. 2011, 2011, 86. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Sarikaya, M.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarikaya, M.; Yıldı rım, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Özdemir, M.; Avcı, M.; Kavurmacı, H. Hermite Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. Turkish J. Sci. 2016, 1, 28–40. [Google Scholar]
- Ayed, H.; Meftah, B. Open two-point Newton–Cotes integral inequalities for differentiable convex functions via Riemann–Liouville fractional integrals. J. Prime Res. Math. 2023, 19, 24–36. [Google Scholar]
- Ying, R.; Lakhdari, A.; Xu, H.; Saleh, W.; Meftah, B. On Conformable Fractional Milne-Type Inequalities. Symmetry 2024, 16, 196. [Google Scholar] [CrossRef]
- Du, T.; Peng, Y. Hermite–Hadamard type inequalities for multiplicative Riemann–Liouville fractional integrals. J. Comput. Appl. Math. 2024, 440, 115582. [Google Scholar] [CrossRef]
- Zhu, W.; Meftah, B.; Xu, H.; Jarad, F.; Lakhdari, A. On parameterized inequalities for fractional multiplicative integrals. Demonstr. Math. 2024, 57, 20230155. [Google Scholar] [CrossRef]
- Almatrafi, M.B.; Saleh, W.; Lakhdari, A.; Jarad, F.; Meftah, B. On the multiparameterized fractional multiplicative integral inequalities. J. Inequal. Appl. 2024, 2024, 52. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2020, 353, 120–129. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Zhang, J. Hermite–Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel. Mathematics 2019, 7, 845. [Google Scholar] [CrossRef]
- Yu, S.; Du, T. Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Math. 2022, 7, 4094–4114. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Yang, H.; Du, T. Some parameterized inequalities by means of fractional integrals with exponential kernels and their applications. J. Inequal. Appl. 2020, 2020, 163. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhou, T.; Zhang, Q.; Du, T. Certain parameterized inequalities arising from fractional integral operators with exponential kernels. Filomat 2021, 35, 1707–1724. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Meftah, B.; Saleh, W.; Xu, H.; Kiliçman, A.; Lakhdari, A. Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels. Fractal Fract. 2024, 8, 345. https://doi.org/10.3390/fractalfract8060345
Li H, Meftah B, Saleh W, Xu H, Kiliçman A, Lakhdari A. Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels. Fractal and Fractional. 2024; 8(6):345. https://doi.org/10.3390/fractalfract8060345
Chicago/Turabian StyleLi, Hong, Badreddine Meftah, Wedad Saleh, Hongyan Xu, Adem Kiliçman, and Abdelghani Lakhdari. 2024. "Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels" Fractal and Fractional 8, no. 6: 345. https://doi.org/10.3390/fractalfract8060345
APA StyleLi, H., Meftah, B., Saleh, W., Xu, H., Kiliçman, A., & Lakhdari, A. (2024). Further Hermite–Hadamard-Type Inequalities for Fractional Integrals with Exponential Kernels. Fractal and Fractional, 8(6), 345. https://doi.org/10.3390/fractalfract8060345