A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return
Abstract
:1. Introduction
2. Literature Review
3. Methods and Materials
3.1. Introduction to Orthogonal Lie Group and Its Algebra
3.2. The Lie Group and Its Algebra
3.3. Stochastic Dynamics on the Lie Group and Its Algebra
3.4. Hybrid Model
4. Data
5. Results
5.1. Determination of Fractal Dimension, Investigation of Long-Term Dependence, Fractionality, and Chaotic Dynamics
5.1.1. Fractal Dimension, Fractionality, Chaos, and Long-term Dependence
5.1.2. Test Results for Entropy and Chaos
5.2. Nonlinearity Test Results
5.3. Results of the Hybrid Model
5.3.1. Experimental Results
5.3.2. Forecast Results
The In-Sample Results
The Out-of-Sample Results
Assessment of Forecast Accuracy
6. Conclusions
- Expanding the size of the dataset.
- Applying our model to other cryptocurrencies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seabe, P.L.; Moutsinga, C.R.B.; Pindza, E. Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal Fract. 2023, 7, 203. [Google Scholar] [CrossRef]
- Peters, E.E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics; Wiley Finance Editions; John Wiley & Sons: Hoboken, NJ, USA, 1994; Volume xviii, pp. 1–315. [Google Scholar]
- Kristoufek, L. Fractal markets hypothesis and the global financial crisis: Wavelet power evidence. Sci. Rep. 2013, 3, 2857. [Google Scholar] [CrossRef]
- Celeste, V.; Corbet, S.; Gurdgiev, C. Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple. Q. Rev. Econ. Financ. 2020, 76, 310–324. [Google Scholar] [CrossRef]
- Phillips, R.C.; Gorse, D. Cryptocurrency price drivers: Wavelet coherence analysis revisited. PLoS ONE 2018, 13, e0195200. [Google Scholar] [CrossRef] [PubMed]
- David, S.A.; Inacio, C.M.C., Jr.; Nunes, R.; Machado, J.A.T. Fractional and fractal processes applied to cryptocurrencies price series. J. Adv. Res. 2021, 32, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Gazizov, R.K.; Ibragimov, N.H. Lie symmetry analysis of differential equations in finance. Nonlinear Dyn. 1998, 17, 387–407. [Google Scholar] [CrossRef]
- Carr, P.; Lipton, A.; Madan, D. The Reduction Method for Valuing Derivative Securities; Working Paper; New York University: New York, NY, USA, 2002. [Google Scholar]
- Lo, C.F.; Hui, C.H. Valuation of financial derivatives with time-dependent parameters: Lie-algebraic approach. Quant. Financ. 2001, 1, 73–78. [Google Scholar] [CrossRef]
- Park, F.C.; Chun, C.M.; Han, C.W.; Webber, N. Interest rate models on Lie groups. Quant. Financ. 2011, 11, 559–572. [Google Scholar] [CrossRef]
- Bildirici, M.; Bayazit, N.G.; Ucan, Y. Modelling Oil Price with Lie Algebras and Long Short-Term Memory Networks. Mathematics 2021, 9, 1708. [Google Scholar] [CrossRef]
- Shittu, O.I.; Yaya, O.S. Measuring forecast performance of ARMA and ARFIMA models: An application to US Dollar/UK pound foreign exchange rate. Eur. J. Sci. Res. 2009, 32, 167–176. [Google Scholar]
- Cheah, E.T.; Fry, J. Speculative bubbles in bitcoin markets? An empirical investigation into the fundamental value of bitcoin. Econ. Lett. 2015, 130, 32–36. [Google Scholar] [CrossRef]
- Bariviera, A.F. The inefficiency of bitcoin revisited: A dynamic approach. Econ. Lett. 2017, 161, 1–4. [Google Scholar] [CrossRef]
- Urquhart, A. The inefficiency of Bitcoin. Econ. Lett. 2016, 148, 80–82. [Google Scholar] [CrossRef]
- Lahmiri, S.; Bekiros, S. Chaos, randomness and multi-fractality in Bitcoin market. Chaos Solitons Fractals 2018, 106, 28–34. [Google Scholar] [CrossRef]
- Corbet, S.; Meegan, A.; Larkin, C.; Lucey, B.; Yarovaya, L. Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett. 2018, 165, 28–34. [Google Scholar] [CrossRef]
- Stavroyiannis, S.; Babalos, V.; Bekiros, S.; Lahmiri, S.; Uddin, G. The High Frequency Multifractal properties of Bitcoin. Phys. A Stat. Mech. Appl. 2019, 520, 62–71. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Sonustun, B. Chaotic behavior in gold, silver, copper and bitcoin prices. Resour. Policy 2021, 74, 102386. [Google Scholar] [CrossRef]
- Grobys, K. A Fractal and Comparative View of the Memory of Bitcoin and S&P 500 Returns. Res. Int. Bus. Financ. 2023, 66, 102021. [Google Scholar]
- Thakkar, A.; Chaudhari, K. Predicting Stock Trend Using an Integrated Term Frequency-Inverse Document Frequency-Based Feature Weight Matrix with Neural Networks. Appl. Soft Comput. J. 2020, 96, 10668. [Google Scholar] [CrossRef]
- Thakkar, A.; Lohiya, R. Analyzing fusion of regularization techniques in the deep learning-based intrusion detection system. Int. J. Intell. Syst. 2021, 36, 7340–7388. [Google Scholar] [CrossRef]
- Wu, C.H.; Lu, C.C.; Ma, Y.F.; Lu, R.S. A new forecasting framework for bitcoin price with LSTM. In Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW), Singapore, 17–20 November 2018; pp. 168–175. [Google Scholar]
- Saad, M.; Spaulding, J.; Njilla, L.; Kamhoua, C.A.; Nyang, D.; Mohaisen, A. Overview of Attack Surfaces in Blockchain; Shetty, S., Kamhoua, C., Njilla, L., Eds.; The IEEE Computer Society, Inc.: Washington, DC, USA, 2019. [Google Scholar]
- Ji, S.; Kim, J.; Im, H. A comparative study of Bitcoin price prediction using deep learning. Mathematics 2019, 7, 898. [Google Scholar] [CrossRef]
- Atsalakis, G.S.; Atsalaki, I.G.; Pasiouras, F.; Zopounidis, C. Bitcoin price forecasting with neuro-fuzzy techniques. Eur. J. Oper. Res. 2019, 276, 770–780. [Google Scholar] [CrossRef]
- Chowdhury, R.; Rahman, M.A.; Rahman, M.S.; Mahdy, M.R.C. An approach to predict and forecast the price of constituents and index 5960 References of cryptocurrency using machine learning. Phys. A Stat. Mech. Its Appl. 2020, 551, 124569. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Huang, C.; Xu, X. Bitcoin price prediction using a hybrid model of wavelet decomposition, neural networks, and long short-term memory. Int. J. Forecast. 2020, 36, 101565. [Google Scholar]
- Herrera-Camacho, J.; Pérez-Soltero, A.; Hernández-Araico, A.; Antúnez-Montes, O. Forecasting the volatility of Bitcoin: An approach based on machine learning models. Expert. Syst. Appl. 2020, 152, 113415. [Google Scholar]
- Derbentsev, V.; Babenko, V.; Khrustalev, K.; Obruch, H.; Khrustalova, S. Comparative performance of machine learning ensemble algorithms for forecasting cryptocurrency prices. Int. J. Eng. 2021, 34, 140–148. [Google Scholar]
- Chen, W.; Xu, H.; Jia, L.; Gao, Y. Machine learning model for Bitcoin exchange rate prediction using economic and technology determinants. Int. J. Forecast. 2021, 37, 28–43. [Google Scholar] [CrossRef]
- Patel, M.M.; Tanwar, S.; Gupta, R.; Kumar, N. A deep learning-based cryptocurrency price prediction scheme for financial institutions. J. Inf. Secur. Appl. 2020, 55, 102583. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Li, X.; Wang, S. Hybrid data decomposition-based deep learning for Bitcoin prediction and algorithm trading. Financ. Innov. 2022, 8, 3. [Google Scholar] [CrossRef]
- Ting, L.; Abd El-Raouf, M.M.; Bakr, M.E.; Alsahangiti, A.M. Analysis of bitcoin prices using a heavy-tailed version of Dagum distribution and machine learning methods. Alex. Eng. J. 2023, 80, 572–583. [Google Scholar] [CrossRef]
- Klimyk, A.U.; Vilenkin, N.Y. Representations of Lie groups and special functions. In Representation Theory and Noncommutative Harmonic Analysis II; Springer: Berlin/Heidelberg, Germany, 1995; pp. 137–259. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Kapetanios, G.; Shin, Y.; Snell, A. Testing for a Unit Root in the Nonlinear STAR Framework. J. Econom. 2003, 112, 359–379. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Variation of Certain Speculative Prices. J. Bus. 1963, 36, 394–419. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Statistical methodology for nonperiodic cycles from covariance to R/S analysis. Ann. Econ. Soc. Meas. 1972, 1, 259–290. [Google Scholar]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the rescaled range R/S in the measurement of noncyclic long run Statistical dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö.Ö.; Ibrahim, B. Chaos, Fractionality, Nonlinear Contagion, and Causality Dynamics of the Metaverse, Energy Consumption, and Environmental Pollution: Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula and Causality Methods. Fractal Fract. 2024, 8, 114. [Google Scholar] [CrossRef]
- Mensi, W.; Al-Yahyaee, K.H.; Kang, S.H. Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from bitcoin and ethereum. Financ. Res. Lett. 2018, 29, 222–230. [Google Scholar] [CrossRef]
- Bouri, E.; Gil-Alana, L.A.; Gupta, R.; Roubaud, D. Modelling long memory volatility in the bitcoin market: Evidence of persistence and structural breaks. Int. J. Financ. Econ. 2019, 24, 412–426. [Google Scholar] [CrossRef]
- Bariviera, A.F.; Basgall, M.J.; Hasperué, W.; Naiouf, M. Some stylized facts of the Bitcoin market. Phys. A Stat. Mech. Appl. 2017, 484, 82–90. [Google Scholar] [CrossRef]
- Ausloos, M.; Ivanova, K. Introducing False EUR and False EUR exchange rates. Phys. A Stat. Mech. Appl. 2000, 286, 353–366. [Google Scholar] [CrossRef]
- Ausloos, M.; Ivanova, K. Multifractal nature of stock exchange prices. Comput. Phys. Commun. 2002, 147, 582–585. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Kantz, H. A robust method to estimate the maximal Lyapunov exponent of a timeseries. Phys. Lett. A 1994, 185, 77–87. [Google Scholar] [CrossRef]
- Brock, W.; Dechert, W.D.; Scheinkman, J. A Test for Independence Based on the Correlation Dimension; Econpapers, Working papers SSRI-8702; University of Wisconsin: Madison, WI, USA, 1987. [Google Scholar]
- Kim, J.M.; Lee, N.; Hwang, S.Y. A Copula Nonlinear Granger Causality. Econ. Model. 2020, 88, 420–430. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Havrda, J.; Charvât, F. Quantification Method of Classification Processes Concept of Structural α-Entropy. Kybernetica 1967, 3, 30–35. [Google Scholar]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Kaspar, F.; Schuster, H.G. Easily Calculable Measure for the Complexity of Spatiotemporal Patterns. Phys. Rev. A 1987, 36, 842–848. [Google Scholar] [CrossRef]
Descriptive Stats | Daily | Weekly |
---|---|---|
Maximum | 2.999448 | 10.99875 |
Minimum | −0.769551 | 0.396199 |
Skewness | −0.240834 | −1.042385 |
Kurtosis | 3.075948 | 2.879419 |
Jarque–Bera | 33.47633 | 125.0098 |
Observations | 3379 | 688 |
ARCH-LM Test | ||
BTd | BTw | |
ARCH-LM (1–5) | 389.67 | 256.03 |
Results | ARCH effects | ARCH effects |
Unit Root Test (URT) | ||
KSS [37] | −16.59016 | −9.411 |
ADF | −9.247 | −5.142103 |
BTd | BTw | ||
Hurst–Mandelbrot R/S test statistic | 0.45 | 0.51 | |
The actual Hausdorff dimensions | |||
Fractal name | BTd DH | BTw DH | |
Asymmetric Cantor set | 0.7 | 0.71 | |
Boundary of the Dragon curve | 1.54 | 1.51 | |
Julia set z2 −1 | 1.3 | 1.32 | |
Boundary of the Lévy C curve | 1.93 | 1.924 | |
von Koch curve | 0.907 | 0.93 | |
Brownian function (Wiener process) | 1.44 | 1.46 |
Hurst (H) | Fractal Dimension (dA) | ||
---|---|---|---|
BTd | BTw | BTd | BTw |
0.53 | 0.535 | 1.476 | 1.469 |
Largest Lyapunov Exponent (λ) | Lyapunov Exponents by Rosenstein, Collins, DeLuca Method [47] | Lyapunov Exponents by Kantz Method [48] | 1/λ | ||||
---|---|---|---|---|---|---|---|
BTd | BTw | BTd | BTw | BTd | BTw | BTd | BTw |
0.33 | 0.35 | 0.51 | 0.115 | 0.53 | 0.109 | 3.02 | 2.857 |
BTd | BTw | |
---|---|---|
Shannon entropy Shannon, transformed to the [0, 1] range | 0.489 | 0.306 |
Havrda–Charvât–Tsallis (HCT) measure | 51.27 | 52.36 |
Kolmogorov–Sinai (KS) complexity measure | 7.46 | 6.93 |
Tests | X.Squared-Daily | X.Squared-Weekly |
TeraesvirtaNW test | 11,922.49 | 58.20973 |
WhiteNW test | 1919.91 | 49.83447 |
LR test for threshold nonlinearity | 2462.021 | 99.00979 |
F-stats | F-stats | |
Tsay’s test for nonlinearity | 161,606.6 | 2.96846 |
Daily | Weekly | |
---|---|---|
Dimensions | z-Statistic | z-Statistic |
2 | 149.1646 | 47.87819 |
3 | 159.8742 | 51.55992 |
4 | 173.2034 | 56.45552 |
5 | 192.4045 | 62.04549 |
6 | 218.5781 | 69.07627 |
LieOLS Methods | LieNLS Methods | ARFIMA Methods | ||||
---|---|---|---|---|---|---|
Daily | Weekly | Daily | Weekly | |||
0.104384 (5.12) | 0.670879 (9.11) | 0.277586 (8.33) | 0.400311 (3.36) | - | - | |
0.81795 (3.268) | 0.507589 (10.47) | 0.037505 (7.627) | 0.524064 (4.76) | - | - | |
0.237793 (4.69) | 0.190746 (3.025) | 0.037536 (4.931) | 0.204789 (5.04) | - | - | |
−0.107061 (5.99) | 0.565645 (5.068) | −0.100084 (2.556) | 0.507935 (5.43) | - | - | |
0.056989 (8.79) | −0.158533 (1.92) | 0.083018 (1.98) | −0.143251 (0.72) | - | - | |
0.056989 (2.17) | 0.076463 (1.73) | 0.139092 (1.86) | 0.066750 (2.012) | - | - | |
−0.03626 (1.81) | 0.297055 (1.79) | 0.064969 (2.096) | −0.109947 (1.96) | - | - | |
- | - | - | - | 0.389472 (5.137) | 0.483771 (4.45147) | |
- | - | - | - | 0.217658 (1.135) | 0.59742 (1.403) | |
- | - | - | - | −0.352901 (1.506645) | −0.155307 (4.91951) | |
SIGMASQ | - | - | - | - | 2.208836 (29.87) | 3.282842 (33.8377) |
AIC | 2.68 | 3.66 | 2.77 | 3.49 | 3.646742 | 4.04 |
R2 | 0.85 | 0.741 | 0.87 | 0.729 | 0.644671 | 0.741 |
LieLSTMOLS Methods | LieLSTMNLS Methods | |||
---|---|---|---|---|
Daily | Weekly | Daily | Weekly | |
0.214 (2.62) | 0.18 (2.14) | 0.252 (2.07) | 0.121 (1.86) | |
0.35 (2.28) | 0.259 (2.67) | 0.405 (3.17) | 0.314 (2.26) | |
0.93 (1.89) | 0.76 (3.45) | 0.86 (2.91) | 0.69 (3.27) | |
−0.261 (2.76) | 0.315 (2.18) | −0.195 (2.44) | 0.335 (1.93) | |
0.019 (3.28) | 0.142 (1.98) | 0.028 (1.88) | 0.151 (3.22) | |
0.10485 (1.88) | 0.0663 (1.76) | 0.10492 (2.16) | 0.0753 (3.48) | |
−0.03626 (1.96) | 0.297055 (2.063) | 0.064969 (1.97) | −0.109947 (2.13) | |
AIC | 1.2 | 1.95 | 2.015 | 2.05 |
R2 | 0.85 | 0.79 | 0.86 | 0.791 |
Lie OLS Method | Lie NLS Method | LieLSTMOLS Method | LieLSTMNLS Method | |||||
---|---|---|---|---|---|---|---|---|
Daily | Weekly | Daily | Weekly | Daily | Weekly | Daily | Weekly | |
RMSE | 6.514 | 5.614 | 5.43 | 5.38 | 1.48 | 1.489 | 1.49 | 1.824 |
MAE | 6.30 | 4.07 | 4.97 | 4.74 | 1.19 | 1.199 | 1.19 | 1.5071 |
MAPE | 68.86 | 59.77 | 51.26 | 55.84 | 11.89 | 12.92 | 11.76 | 21.145 |
Standard Lie OLS Method | Standard Lie NLS Method | |||||||
Daily | Weekly | Daily | Weekly | |||||
T + 1 | T + 10 | T + 1 | T + 10 | T + 1 | T + 10 | T + 1 | T + 10 | |
RMSE | 5.38 | 5.46 | 5.61 | 5.19 | 4.21 | 4.81 | 3.82 | 3.91 |
MAE | 4.74 | 4.91 | 5.07 | 5.62 | 3.38 | 3.97 | 2.97 | 2.65 |
MAPE | 55.84 | 60.01 | 61.77 | 56.51 | 44.04 | 51.16 | 41.58 | 44.36 |
LSTM | ||||||||
LieLSTMOLS Method | LieLSTMNLS Method | |||||||
Daily | Weekly | Daily | Weekly | |||||
T + 1 | T + 10 | T + 1 | T + 10 | T + 1 | T + 10 | T + 1 | T + 10 | |
RMSE | 1.517 | 1.58 | 1.0487 | 1.0706 | 1.67 | 1.0327 | 1.8427 | 1.767 |
MAE | 0.66 | 0.666 | 0.75 | 0.7476 | 0.65 | 0.896 | 0.45850 | 0.712 |
MAPE | 11.74 | 11.311 | 9.185 | 9.269 | 12.73 | 11.9115 | 12.7872 | 11.984 |
LieOLS | LieNLS | LieLSTMOLS | LieLSTMNLS | |
---|---|---|---|---|
LieOLS | - | |||
LieNLS | 0.36 | - | ||
LieLSTMOLS | 0.008 | 0.024 | - | |
LieLSTMNLS | 0.015 | 0.023 | 0.001 | - |
LieOLS | LieNLS | LieLSTMOLS | LieLSTMNLS | |
---|---|---|---|---|
LieOLS | - | |||
LieNLS | 0.32 | - | ||
Lie-LSTMOLS | 0.012 | 0.019 | - | |
Lie-LSTMNLS | 0.013 | 0.027 | 0.006 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bildirici, M.; Ucan, Y.; Tekercioglu, R. A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return. Fractal Fract. 2024, 8, 413. https://doi.org/10.3390/fractalfract8070413
Bildirici M, Ucan Y, Tekercioglu R. A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return. Fractal and Fractional. 2024; 8(7):413. https://doi.org/10.3390/fractalfract8070413
Chicago/Turabian StyleBildirici, Melike, Yasemen Ucan, and Ramazan Tekercioglu. 2024. "A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return" Fractal and Fractional 8, no. 7: 413. https://doi.org/10.3390/fractalfract8070413
APA StyleBildirici, M., Ucan, Y., & Tekercioglu, R. (2024). A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return. Fractal and Fractional, 8(7), 413. https://doi.org/10.3390/fractalfract8070413