Novel Approach by Shifted Fibonacci Polynomials for Solving the Fractional Burgers Equation
Abstract
:1. Introduction
- Introducing the shifted Fibonacci polynomials.
- Establishing some new formulas for these polynomials. These formulas will be pivotal in proposing our numerical algorithm.
- Designing a spectral algorithm based on the typical collocation method to obtain new solutions for fractional Burgers equations.
- Investigating the convergence analysis by developing new inequalities regarding the SFPs.
- We will provide numerical examples and comparisons to test our method.
- Developing new shifted Fibonacci polynomials.
- Constructing theoretical background concerning these polynomials, more precisely, the fundamental formulas of these polynomials, such as their analytic and inversion formulas. In addition, the integer and fractional derivatives of these polynomials are established. These formulas will be the backbone of applying various numerical methods to different DEs.
- Establishing new operational matrices of integer and fractional derivatives for these polynomials. These matrices are considered important tools for treating DEs.
2. Fundamentals and Key Formulas
2.1. An Overview on Fibonacci Polynomials and Their Shifted Ones
2.2. The Caputo Fractional Derivative
3. Some Novel Formulas Regarding the SFPs
4. Collocation Procedure for the TFBE
The Proposed Collocation Algorithm
Algorithm 1 Coding algorithm for our proposed technique |
Input
, and . Step 1. Assume an approximate solution as in (61). Step 2. Use Corollaries 3 and 4 along with the expansion (61) to obtain the residual in (63). Step 3. Apply the collocation method to obtain the system in (64) and (65). Step 4. Use FindRoot command with initial guess to solve the system in (64) and (65) to obtain . Output |
5. The Convergence and Error Analysis
- The first lemma gives an upper estimate for .
- The second lemma expresses the infinitely differentiable function in terms of .
- The first theorem gives an upper estimate for the unknown expansion coefficients .
- The second theorem gives an upper estimate for the unknown double expansion coefficients .
- The third theorem gives an upper estimate for the truncation error.
6. Illustrative Examples
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikiforov, F.; Uvarov, V.B. Special Functions of Mathematical Physics; Springer: Berlin/Heidelberg, Germany, 1988; Volume 205. [Google Scholar]
- Gil, A.; Segura, J.; Temme, N.M. Numerical Methods for Special Functions; SIAM: Philadelphia, PA, USA, 2007. [Google Scholar]
- Srivastava, H.M.; Adel, W.; Izadi, M.; El-Sayed, A.A. Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials. Fract. Fract. 2023, 7, 301. [Google Scholar] [CrossRef]
- İlhan, Ö.; Şahin, G. A numerical approach for an epidemic SIR model via Morgan-Voyce series. Int. J. Math. Comput. Eng. 2024, 2, 125–140. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; Boulaaras, S.; Sweilam, N.H. Numerical solution of the fractional-order logistic equation via the first-kind Dickson polynomials and spectral tau method. Math. Methods Appl. Sci. 2023, 46, 8004–8017. [Google Scholar] [CrossRef]
- Oruç, Ö. A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 14–25. [Google Scholar] [CrossRef]
- Izadi, M.; Sene, N.; Adel, W.; El-Mesady, A. The Layla and Majnun mathematical model of fractional order: Stability analysis and numerical study. Results Phys. 2023, 51, 106650. [Google Scholar] [CrossRef]
- Atta, A.G.; Abd-Elhameed, W.M.; Moatimid, G.M.; Youssri, Y.H. Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations. Appl. Numer. Math. 2021, 167, 237–256. [Google Scholar] [CrossRef]
- Atta, A.G.; Abd-Elhameed, W.M.; Youssri, Y.H. Shifted fifth-kind Chebyshev polynomials Galerkin-based procedure for treating fractional diffusion-wave equation. Int. J. Mod. Phys. C 2022, 33, 2250102. [Google Scholar] [CrossRef]
- Sadri, K.; Aminikhah, H. A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation. Int. J. Comput. Math. 2022, 99, 966–992. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M. Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers’ equation. Fractal Fract. 2021, 5, 53. [Google Scholar] [CrossRef]
- Atta, A.G.; Abd-Elhameed, W.M.; Moatimid, G.M.; Youssri, Y.H. Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem. Math. Sci. 2023, 17, 415–429. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alsuyuti, M.M. Numerical Treatment of Multi-Term Fractional Differential Equations via New Kind of Generalized Chebyshev Polynomials. Fractal Fract. 2023, 7, 74. [Google Scholar] [CrossRef]
- Koshy, T. Fibonacci and Lucas Numbers With Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 51. [Google Scholar]
- Haq, S.; Ali, I. Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials. Eng. Comput. 2022, 38, 2059–2068. [Google Scholar] [CrossRef]
- Postavaru, O. An efficient numerical method based on Fibonacci polynomials to solve fractional differential equations. Math. Comput. Simul. 2023, 212, 406–422. [Google Scholar] [CrossRef]
- Sabermahani, S.; Ordokhani, Y.; Yousefi, S.A. Fibonacci wavelets and their applications for solving two classes of time-varying delay problems. Optim. Control Appl. Methods 2020, 41, 395–416. [Google Scholar] [CrossRef]
- Ali, I.; Haq, S.; Nisar, K.S.; Arifeen, S.U. Numerical study of 1D and 2D advection-diffusion-reaction equations using Lucas and Fibonacci polynomials. Arab. J. Math. 2021, 10, 513–526. [Google Scholar] [CrossRef]
- Shah, F.A.; Irfan, M.; Nisar, K.S.; Matoog, R.T.; Mahmoud, E.E. Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions. Results Phys. 2021, 24, 104123. [Google Scholar] [CrossRef]
- Heydari, M.H.; Avazzadeh, Z. Fibonacci polynomials for the numerical solution of variable-order space-time fractional Burgers-Huxley equation. Math. Methods Appl. Sci. 2021, 44, 6774–6786. [Google Scholar] [CrossRef]
- Magin, R. Fractional calculus in bioengineering, part 1. Crit. Rev. Biomed. Eng. 2004, 32. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2022. [Google Scholar]
- Nisar, K.S.; Farman, M.; Abdel-Aty, M.; Ravichandran, C. A review of fractional order epidemic models for life sciences problems: Past, present and future. Alex. Eng. J. 2024, 95, 283–305. [Google Scholar] [CrossRef]
- Qayyum, M.; Ahmad, E.; Saeed, S.T.; Akgül, A.; El Din, S.M. New solutions of fractional 4D chaotic financial model with optimal control via He-Laplace algorithm. Ain Shams Eng. J. 2024, 15, 102503. [Google Scholar] [CrossRef]
- Yadav, P.; Jahan, S.; Nisar, K.S. Solving fractional Bagley-Torvik equation by fractional order Fibonacci wavelet arising in fluid mechanics. Ain Shams Eng. J. 2024, 15, 102299. [Google Scholar] [CrossRef]
- Khader, M.; Adel, M.; Riaz, M.B.; Ahmad, H. Theoretical treatment and implementation of the SCM included Appell-Changhee polynomials for the fractional delayed carbon absorption-emission model. Results Phys. 2024, 58, 107459. [Google Scholar] [CrossRef]
- Adel, M.; Khader, M. Theoretical and numerical treatment for the fractal-fractional model of pollution for a system of lakes using an efficient numerical technique. Alex. Eng. J. 2023, 82, 415–425. [Google Scholar] [CrossRef]
- Baleanu, D.; Abadi, M.H.; Jajarmi, A.; Vahid, K.Z.; Nieto, J. A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects. Alex. Eng. J. 2022, 61, 4779–4791. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A predictor–corrector compact difference scheme for a nonlinear fractional differential equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Albogami, D.; Maturi, D.; Alshehri, H. Adomian Decomposition Method for Solving Fractional Time-Klein-Gordon Equations Using Maple. Appl. Math. 2023, 14, 411–418. [Google Scholar] [CrossRef]
- Sadri, K.; Hosseini, K.; Hinçal, E.; Baleanu, D.; Salahshour, S. A pseudo-operational collocation method for variable-order time-space fractional KdV–Burgers–Kuramoto equation. Math. Methods Appl. Sci. 2023, 46, 8759–8778. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M. Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials. Aims Math. 2024, 9, 2137–2166. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Al-Harbi, M.S.; Atta, A.G. New convolved Fibonacci collocation procedure for the Fitzhugh-Nagumo non-linear equation. Nonlinear Eng. 2024, 13, 20220332. [Google Scholar]
- Izadi, M.; Yüzbaşı, Ş.; Adel, W. A new Chelyshkov matrix method to solve linear and nonlinear fractional delay differential equations with error analysis. Math. Sci. 2023, 17, 267–284. [Google Scholar] [CrossRef]
- Roul, P.; Goura, V.; Cavoretto, R. A numerical technique based on B-spline for a class of time-fractional diffusion equation. Numer. Methods Partial Differ. Equ. 2023, 39, 45–64. [Google Scholar] [CrossRef]
- Saad, K.M.; Al-Sharif, E.H.F. Analytical study for time and time-space fractional Burgers’ equation. Adv. Differ. Equ. 2017, 2017, 300. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time-and space-fractional coupled Burgers’ equations via homotopy algorithm. Alex. Eng. J. 2016, 55, 1753–1763. [Google Scholar] [CrossRef]
- Albuohimad, B.; Adibi, H. The Chebyshev collocation solution of the time fractional coupled Burgers’ equation. J. Math. Comput. Sci. 2017, 17, 179–193. [Google Scholar] [CrossRef]
- Hadhoud, A.R.; Srivastava, H.M.; Rageh, A.A.M. Non-polynomial B-spline and shifted Jacobi spectral collocation techniques to solve time-fractional nonlinear coupled Burgers’ equations numerically. Adv. Differ. Equ. 2021, 2021, 439. [Google Scholar] [CrossRef]
- Ozdemir, N.; Secer, A.; Bayram, M. The Gegenbauer wavelets-based computational methods for the coupled system of Burgers’ equations with time-fractional derivative. Mathematics 2019, 7, 486. [Google Scholar] [CrossRef]
- Pirkhedri, A. Applying Haar-Sinc spectral method for solving time-fractional Burger equation. Math. Comput. Sci. 2024, 5, 43–54. [Google Scholar]
- Mittal, A.K. Spectrally accurate approximate solutions and convergence analysis of fractional Burgers’ equation. Arab. J. Math. 2020, 9, 633–644. [Google Scholar] [CrossRef]
- Chawla, R.; Deswal, K.; Kumar, D.; Baleanu, D. Numerical simulation for generalized time-fractional Burgers’ equation with three distinct linearization schemes. J. Comput. Nonlinear Dynam. 2023, 18, 041001. [Google Scholar] [CrossRef]
- Mohammed, O.H.; AL-Safi, M.G.S.; Yousif, A.A. Numerical solution for fractional order space-time Burger’s equation using Legendre wavelet-Chebyshev wavelet spectral collocation method. Al-Nahrain J. Sci. 2018, 21, 121–127. [Google Scholar] [CrossRef]
- Huang, Y.; Mohammadi Zadeh, F.; Hadi Noori Skandari, M.; Ahsani Tehrani, H.; Tohidi, E. Space–time Chebyshev spectral collocation method for nonlinear time-fractional Burgers equations based on efficient basis functions. Math. Methods Appl. Sci. 2021, 44, 4117–4136. [Google Scholar] [CrossRef]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods in Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Doha, E.H.; Abd-Elhameed, W.M.; Bhrawy, A.H. New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials. Collect. Math. 2013, 64, 373–394. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Alkenedri, A.M. Spectral Solutions of Linear and Nonlinear BVPs Using Certain Jacobi Polynomials Generalizing Third- and Fourth-Kinds of Chebyshev Polynomials. CMES Comput. Model. Eng. Sci. 2021, 126, 955–989. [Google Scholar] [CrossRef]
- Hafez, R.M.; Zaky, M.A.; Abdelkawy, M.A. Jacobi spectral Galerkin method for distributed-order fractional Rayleigh–Stokes problem for a generalized second grade fluid. Front. Phys. 2020, 7, 240. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gusu, D.M.; Mohammed, P.O.; Wedajo, G.; Nonlaopon, K.; Hamed, Y.S. Solutions of General Fractional-Order Differential Equations by Using the Spectral Tau Method. Fract. Fract. 2021, 6, 7. [Google Scholar] [CrossRef]
- Abd-Elhameed, W.M.; Ahmed, H.M. Tau and Galerkin operational matrices of derivatives for treating singular and Emden–Fowler third-order-type equations. Int. J. Mod. Phys. C 2022, 33, 2250061. [Google Scholar] [CrossRef]
- Mostafa, D.; Zaky, M.A.; Hafez, R.M.; Hendy, A.S.; Abdelkawy, M.A.; Aldraiweesh, A.A. Tanh Jacobi spectral collocation method for the numerical simulation of nonlinear Schrödinger equations on unbounded domain. Math. Meth. Appl. Sci. 2023, 46, 656–674. [Google Scholar] [CrossRef]
- Atta, A.G. Two spectral Gegenbauer methods for solving linear and nonlinear time fractional Cable problems. Int. J. Mod. Phys. C 2024, 35, 2450070. [Google Scholar] [CrossRef]
- Amin, A.Z.; Abdelkawy, M.A.; Soluma, E.M.; Babatin, M.M. A space-time spectral approximation for solving two-dimensional variable-order fractional convection-diffusion equations with nonsmooth solutions. Int. J. Mod. Phys. C 2024, 35, 2450088. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S. Galerkin operational approach for multi-dimensions fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2022, 114, 106608. [Google Scholar] [CrossRef]
- Alsuyuti, M.M.; Doha, E.H.; Ezz-Eldien, S.S.; Youssef, I.K. Spectral Galerkin schemes for a class of multi-order fractional pantograph equations. J. Comput. Appl. Math. 2021, 384, 113157. [Google Scholar] [CrossRef]
- Adel, M.; Khader, M.M.; Algelany, S.; Aldwoah, K. An accurate approach to simulate the fractional delay differential equations. Fractal Fract. 2023, 7, 671. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Andrews, G.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Abd-Elhameed, W.M.; Ahmed, H.M.; Napoli, A.; Kowalenko, V. New Formulas Involving Fibonacci and Certain Orthogonal Polynomials. Symmetry 2023, 15, 736. [Google Scholar] [CrossRef]
- Shafiq, M.; Abbas, M.; Abdullah, F.A.; Majeed, A.; Abdeljawad, T.; Alqudah, M.A. Numerical solutions of time fractional Burgers’ equation involving Atangana–Baleanu derivative via cubic B-spline functions. Results Phys. 2022, 34, 105244. [Google Scholar] [CrossRef]
- Yadav, S.; Pandey, R.K. Numerical approximation of fractional Burgers equation with Atangana–Baleanu derivative in Caputo sense. Chaos Solitons Fract. 2020, 133, 109630. [Google Scholar] [CrossRef]
Method in [63] | Our Method at | ||||
---|---|---|---|---|---|
0.2 | |||||
0.4 | |||||
0.6 | |||||
0.8 | |||||
1.0 |
Method in [63] | ||||
---|---|---|---|---|
, | , | Our Method at | Our CPU Time | |
0.2 | 54.813 | |||
0.3 | 54.703 | |||
0.4 | 56.171 | |||
0.5 | 51.283 |
Method in [63] | ||||
---|---|---|---|---|
, | , | , | Our Method at | |
0.2 | ||||
0.4 | ||||
0.6 | ||||
0.8 | ||||
1.0 |
(0.1, 0.1) | |||
(0.3, 0.3) | |||
(0.5, 0.5) | |||
(0.7, 0.7) | |||
(0.9, 0.9) |
Method in [63] | |||
---|---|---|---|
Our Method at | |||
0.1 | |||
0.2 | |||
0.3 | |||
0.4 | |||
0.5 | |||
0.6 | |||
0.7 | |||
0.8 | |||
0.9 |
Method in [63] | ||||
---|---|---|---|---|
, | , | Our Method at | Our CPU Time | |
0.2 | 53.639 | |||
0.3 | 54.438 | |||
0.4 | 54.376 | |||
0.5 | 52.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, M.H.; Abu Sunayh, A.F.; Atta, A.G.; Abd-Elhameed, W.M. Novel Approach by Shifted Fibonacci Polynomials for Solving the Fractional Burgers Equation. Fractal Fract. 2024, 8, 427. https://doi.org/10.3390/fractalfract8070427
Alharbi MH, Abu Sunayh AF, Atta AG, Abd-Elhameed WM. Novel Approach by Shifted Fibonacci Polynomials for Solving the Fractional Burgers Equation. Fractal and Fractional. 2024; 8(7):427. https://doi.org/10.3390/fractalfract8070427
Chicago/Turabian StyleAlharbi, Mohammed H., Abdullah F. Abu Sunayh, Ahmed Gamal Atta, and Waleed Mohamed Abd-Elhameed. 2024. "Novel Approach by Shifted Fibonacci Polynomials for Solving the Fractional Burgers Equation" Fractal and Fractional 8, no. 7: 427. https://doi.org/10.3390/fractalfract8070427
APA StyleAlharbi, M. H., Abu Sunayh, A. F., Atta, A. G., & Abd-Elhameed, W. M. (2024). Novel Approach by Shifted Fibonacci Polynomials for Solving the Fractional Burgers Equation. Fractal and Fractional, 8(7), 427. https://doi.org/10.3390/fractalfract8070427