Non-Additivity and Additivity in General Fractional Calculus and Its Physical Interpretations †
Abstract
:1. Introduction
2. Initial Introductory Explanations
2.1. Additivity and Non-Additivity of GF Integral on Finite Interval
2.2. Why Is Additivity Needed for Applications?
3. Additive and Non-Additive General Fractional Operators
3.1. Preliminary: Definitions of GFI and GFD
3.2. Additive GF Operators on Interval
3.3. Non-Additive GF Operators on Interval
4. Additivity and Non-Additivity of Line GF Integrals
4.1. Simple Line in
4.2. Definition of Line GFI of Vector Field
4.3. Line GFI of T-Type for Piecewise Simple Lines
4.4. Line GFI of L-Type for Piecewise Simple Lines
5. Additivity by the GF Gradient Theorems
5.1. Line General Fractional Gradient in
5.2. GF Gradient Theorem for T-Type Operators
5.3. GF Gradient Theorem for L-Type Operators
6. Nonlocality and Additivity Properties in Applications
6.1. Path Dependence and Nonlocality
6.2. Path-Dependent Quantity of Nonlocal Processes
6.3. Properties of Path-Dependent Quantity for Nonlocal Processes
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993; 1006p. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman and J. Wiley: New York, NY, USA, 1994; 360p, ISBN 9780582219779. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1998; 340p, ISBN 978-0-12-558840-9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; 523p, ISBN 978-0-444-51832-3. [Google Scholar]
- Diethelm, F. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer-xerlag: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 481p. [Google Scholar] [CrossRef]
- Kochubei, A.; Luchko, Y. (Eds.) Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 519p. [Google Scholar] [CrossRef]
- Letnikov, A.V. On the historical development of the theory of differentiation with arbitrary index. Sb. Math. 1868, 3, 85–112. [Google Scholar]
- Ross, B. A brief history and exposition of the fundamental theory of fractional calculus. In Fractional Calculus and Its Applications. Proceedings of the International Conference, West Haven, CT, USA, June 1974; Series: Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; Volume 457, pp. 1–36. [Google Scholar] [CrossRef]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Tenreiro Machado, J.A.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Galhano, A.M.; Trujillo, J.J. Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 2013, 16, 479–500. [Google Scholar] [CrossRef]
- Valerio, D.J.; Tenreiro Machado, J.A.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Tenreiro Machado, J.A.; Kiryakova, V. The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 307–336. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Fractional calculus in Russia at the end of XIX century. Mathematics 2021, 9, 1736. [Google Scholar] [CrossRef]
- Tarasov, V.E. On history of mathematical economics: Application of fractional calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: New York, NY, USA, 2010; 505p. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. (Eds.) Fractional Dynamics. Recent Advances; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Solids: Anomalous Probability Transport in Semiconductors, Dielectrics and Nanosystems; World Scientific: Singapore, 2013. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Atanackovic, T.; Pilipovic, S.; Stankovic, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles.; Wiley-ISTE: London, UK; Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer International Publishing: Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015. [Google Scholar] [CrossRef]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space. Anomalous Transport Models; World Scientific: Singapore, 2018; 300p. [Google Scholar] [CrossRef]
- Handbook of Fractional Calculus with Applications. Volume 4. Application in Physics. Part A; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 306p. [CrossRef]
- Handbook of Fractional Calculus with Applications. Volume 5. Application in Physics. Part B; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; 319p. [CrossRef]
- Ionescu, C.; Lopes, A.; Copot, D.; Tenreiro Machado, J.; Bates, J. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Tarasov, V.E., (Ed.). Mathematical Economics: Application of Fractional Calculus; MDPI: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, V.V. Economic Dynamics with Memory: Fractional Calculus Approach; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021; 602p. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for fractional derivatives and integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef]
- Tarasov, V.E. No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2945–2948. [Google Scholar] [CrossRef]
- Cresson, J.; Szafranska, A. Comments on various extensions of the Riemann-Liouville fractional derivatives: About the Leibniz and chain rule properties. Commun. Nonlinear Sci. Numer. Simul. 2020, 82, 104903. [Google Scholar] [CrossRef]
- Tarasov, V.E. On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 2016, 30, 1–4. [Google Scholar] [CrossRef]
- Tarasov, V.E. No nonlocality. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 62, 157–163. [Google Scholar] [CrossRef]
- Tarasov, V.E. Rules for fractional-dynamic generalizations: Difficulties of constructing fractional dynamic models. Mathematics 2019, 7, 554. [Google Scholar] [CrossRef]
- Tarasov, V.E.; Tarasova, S.S. Fractional derivatives and integrals: What are they needed for? Mathematics 2020, 8, 164. [Google Scholar] [CrossRef]
- Stynes, M. Fractional-order derivatives defined by continuous kernels are too restrictive. Appl. Math. Lett. 2018, 85, 22–26. [Google Scholar] [CrossRef]
- Giusti, A. A comment on some new definitions of fractional derivative. Nonlinear Dyn. 2018, 93, 1757–1763. [Google Scholar] [CrossRef]
- Garrappa, R. Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 302–306. [Google Scholar] [CrossRef]
- Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M. Why fractional derivatives with nonsingular kernels should not be used? Fract. Calc. Appl. Anal. 2020, 23, 610–634. [Google Scholar] [CrossRef]
- Sonine, N. On the generalization of an Abel formula. (Sur la generalisation d’une formule d’Abel). Acta Math. 1884, 4, 171–176. (In French) [Google Scholar] [CrossRef]
- Sonin, N.Y. Generalization of one Abel formula. Notes Novorossiysk Soc. Nat. 1885, 9, 1–8. [Google Scholar]
- Kochubei, A.N. General fractional calculus, evolution equations and renewal processes. Integral Equ. Oper. Theory 2011, 71, 583–600. [Google Scholar] [CrossRef]
- Sonin, N.Y. On the generalization of an Abel formula. In Investigations of Cylinder Functions and Special Polynomials; GTTI: Moscow, Russia, 1954; pp. 148–154. [Google Scholar]
- Luchko, Y. General fractional integrals and derivatives with the Sonine kernels. Mathematics 2021, 9, 594. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives of arbitrary order. Symmetry 2021, 13, 755. [Google Scholar] [CrossRef]
- Luchko, Y. Operational calculus for the general fractional derivatives with the Sonine kernels. Fract. Calc. Appl. Anal. 2021, 24, 338–375. [Google Scholar] [CrossRef]
- Luchko, Y. Special functions of fractional calculus in the form of convolution series and their applications. Mathematics 2021, 9, 2132. [Google Scholar] [CrossRef]
- Luchko, Y. Convolution series and the generalized convolution Taylor formula. Fract. Calc. Appl. Anal. 2022, 25, 207–228. [Google Scholar] [CrossRef]
- Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann-Liouville sense. Mathematics 2022, 10, 849. [Google Scholar] [CrossRef]
- Luchko, Y. The 1st level general fractional derivatives and some of their properties. J. Math. Sci. 2022, 266, 709–722. [Google Scholar] [CrossRef]
- Al-Kandari, M.; Hanna, L.A.M.; Luchko, Y. Operational calculus for the general fractional derivatives of arbitrary order. Mathematics 2022, 10, 1590. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. Comparison principles for solutions to the fractional differential inequalities with the general fractional derivatives and their applications. J. Differ. Equ. 2022, 319, 312–324. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional integrals and derivatives and their applications. Phys. D Nonlinear Phenom. 2023, 455, 133906. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. The general fractional integrals and derivatives on a finite interval. Mathematics 2023, 11, 1031. [Google Scholar] [CrossRef]
- Al-Refai, M.; Luchko, Y. General fractional calculus operators of distributed order. Axioms 2023, 12, 1075. [Google Scholar] [CrossRef]
- Luchko, Y. Symmetrical Sonin kernels in terms of the hypergeometric functions. arXiv 2023, arXiv:2401.00558. [Google Scholar] [CrossRef]
- Jararheh, M.; Al-Refai, M.; Luchko, Y. A self-adjoint fractional Sturm-Liouville problem with the general fractional derivatives. J. Differ. Equ. 2024, 413, 110–128. [Google Scholar] [CrossRef]
- Alkandari, M.; Luchko, Y. Operational calculus for the 1st level general fractional derivatives and its applications. Mathematics 2024, 12, 2626. [Google Scholar] [CrossRef]
- Luchko, Y. General fractional calculus operators with the Sonin kernels and some of their applications. IFAC Pap. 2024, 58, 302–311. [Google Scholar] [CrossRef]
- Al-Refai, M.; Fernandez, A. Generalising the fractional calculus with Sonine kernels via conjugations. J. Comput. Appl. Math. 2023, 427, 115159. [Google Scholar] [CrossRef]
- Fernandez, A. Mikusiski’s operational calculus for general conjugated fractional derivatives. Bol. Soc. Mat. Mex. 2023, 29, 25. [Google Scholar] [CrossRef]
- Al-Refai, M.; Fernandez, A. Comparison principles for a class of general integro-differential inequalities with applications. Comput. Appl. Math. 2024, 43, 99. [Google Scholar] [CrossRef]
- Fernandez, A. Abstract algebraic construction in fractional calculus: Parametrised families with semigroup properties. Complex Anal. Oper. Theory 2024, 18, 50. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus: Multi-kernel approach. Mathematics 2021, 9, 1501. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional vector calculus. Mathematics 2021, 9, 2816. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 848. [Google Scholar] [CrossRef]
- Tarasov, V.E. General nonlocal probability of arbitrary order. Entropy 2023, 25, 919. [Google Scholar] [CrossRef]
- Tarasov, V.E. Multi-kernel general fractional calculus of abitrary order. Mathematics 2023, 11, 1726. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional calculus in multi-dimensional space: Riesz form. Mathematics 2023, 11, 1651. [Google Scholar] [CrossRef]
- Tarasov, V.E. Scale-invariant general fractional calculus: Mellin convolution operators. Fractal Fract. 2023, 7, 481. [Google Scholar] [CrossRef]
- Tarasov, V.E. Parametric general fractional calculus: Nonlocal operators acting on function with respect to another function. Comput. Appl. Math. 2024, 43, 183. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional dynamics. Mathematics 2021, 9, 1464. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-Markovian quantum dynamics. Entropy 2021, 23, 1006. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, V.E. General non-local continuum mechanics: Derivation of balance equations. Mathematics 2022, 10, 1427. [Google Scholar] [CrossRef]
- Tarasov, V.E. General non-local electrodynamics: Equations and non-local effects. Ann. Phys. 2022, 445, 169082. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal classical theory of gravity: Massiveness of nonlocality and mass shielding by nonlocality. Eur. Phys. J. Plus 2022, 137, 1336. [Google Scholar] [CrossRef]
- Tarasov, V.E. Nonlocal statistical mechanics: General fractional Liouville equations and their solutions. Phys. A Stat. Mech. Its Appl. 2023, 609, 128366. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional Noether theorem and non-holonomic action principle. Mathematics 2023, 11, 4400. [Google Scholar] [CrossRef]
- Tarasov, V.E. General fractional classical mechanics: Action principle, Euler-Lagrange equations and Noether theorem. Phys. D Nonlinear Phenom. 2024, 457, 133975. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Pilipovic, S. Zener model with general fractional calculus: Thermodynamical restrictions. Fractal Fract. 2022, 6, 617. [Google Scholar] [CrossRef]
- Miskovic-Stankovic, V.; Janev, M.; Atanackovic, T.M. Two compartmental fractional derivative model with general fractional derivative. J. Pharmacokinet. Pharmacodyn. 2023, 50, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Miskovic-Stankovic, V.; Atanackovic, T.M. On a system of equations with general fractional derivatives arising in diffusion theory. Fractal Fract. 2023, 7, 518. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Integral equations of the first kind of Sonine type. Int. J. Math. Math. Sci. 2003, 57, 3609–3632. [Google Scholar] [CrossRef]
- Samko, S.G.; Cardoso, R.P. Sonine integral equations of the first kind in Ly(0; b). Fract. Calc. Appl. Anal. 2003, 6, 235–258. [Google Scholar]
- Toaldo, B. Convolution-type derivatives, hitting times of subordinators and time-changed C0-semigroups. Potential Anal. 2015, 42, 115–140. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems. Fract. Calc. Appl. Anal. 2016, 19, 675–695. [Google Scholar] [CrossRef]
- Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics 2020, 8, 2115. [Google Scholar] [CrossRef]
- Sin, C.-S. Well-posedness of general Caputo-type fractional differential equations. Fract. Calc. Appl. Anal. 2018, 21, 819–832. [Google Scholar] [CrossRef]
- Ascione, G. Abstract Cauchy problems for the generalized fractional calculus. Nonlinear Anal. 2021, 209, 112339. [Google Scholar] [CrossRef]
- Hanyga, A. A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 2020, 23, 211–223. [Google Scholar] [CrossRef]
- Giusti, A. General fractional calculus and Prabhakar’s theory. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105114. [Google Scholar] [CrossRef]
- Bazhlekova, E. Estimates for a general fractional relaxation equation and application to an inverse source problem. Math. Methods Appl. Sci. 2018, 41, 9018–9026. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Bazhlekov, I. Identification of a space-dependent source term in a nonlocal problem for the general time-fractional diffusion equation. J. Comput. Appl. Math. 2021, 386, 113213. [Google Scholar] [CrossRef]
- Kochubei, A.N. Chapter 5: General fractional calculus. In Handbook of Fractional Calculus with Applications. Volume 1. Basic Theory; Kochubei, A., Luchko, Y., Eds.; Series edited by J.A. Tenreiro Machado; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 111–126. [Google Scholar] [CrossRef]
- Kochubei, A.N. Chapter 11: Equations with general fractional time derivatives. Cauchy problem. In Handbook of Fractional Calculus with Applications. Volume 2. Fractional Differential Equations; Kochubei, A., Luchko, Y., Eds.; Series edited by J.A. Tenreiro Machado; De Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 223–234. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Fractional kinetic hierarchies and intermittency. Kinetic and related models. Am. Inst. Math. Sci. 2017, 10, 725–740. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G. Growth equation of the general fractional calculus. Mathematics 2019, 7, 615. [Google Scholar] [CrossRef]
- Kochubei, A.N.; Kondratiev, Y.G.; da Silva, J.L. On fractional heat equation. Fract. Calc. Appl. Anal. 2021, 24, 73–87. [Google Scholar] [CrossRef]
- Kondratiev, Y.; da Silva, J. Cesaro limits for fractional dynamics. Fractal Fract. 2021, 5, 133. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. Inverse problems for a generalized subdiffusion equation with final over determination. Math. Model. Anal. 2019, 24, 236–262. [Google Scholar] [CrossRef]
- Kinash, N.; Janno, J. An inverse problem for a generalized fractional derivative with an application in reconstruction of time- and space- dependent sources in fractional diffusion and wave equations. Mathematics 2019, 7, 1138. [Google Scholar] [CrossRef]
- Janno, J.; Kasemets, K.; Kinash, N. Inverse problem to identify a space-dependent diffusivity coefficient in a generalized subdiffusion equation from final data. Proc. Est. Acad. Sci. 2022, 71, 3–15. [Google Scholar] [CrossRef]
- Janno, J. Inverse problems for a generalized fractional diffusion equation with unknown history. arXiv 2024, arXiv:2402.00482. [Google Scholar] [CrossRef]
- Gorska, K.; Horzel, A. Subordination and memory dependent kinetics in diffusion and relaxation phenomena. Fract. Calc. Appl. Anal. 2024, 26, 480–512. [Google Scholar] [CrossRef]
- Omaba, M.E. On generalized fractional differential equation with Sonine kernel on a function space. Partial. Differ. Equ. Appl. Math. 2024, 9, 100645. [Google Scholar] [CrossRef]
- Ortigueira, M.D. Searching for Sonin kernels. Fract. Calc. Appl. Anal. 2024. accepted for publication. [Google Scholar] [CrossRef]
- Ferreira, R.A.C.; Rocha, C.D.A. Discrete convolution operators and equations. Fract. Calc. Appl. Anal. 2024, 27, 757–771. [Google Scholar] [CrossRef]
- Antoniouk, A.V.; Kochubei, A. Discrete-time general fractional calculus. Fract. Calc. Appl. Anal. 2024. [Google Scholar] [CrossRef]
- Beghin, L.; Caputo, M. Commutative and associative properties of the Caputo fractional derivative and its generalizing convolution operator. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105338. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis, Volume 2. Measure. The Lebesgue Integral. Hilbert Space, 2nd ed.; Graylock: Alnaby, NY, USA, 1963. [Google Scholar]
- Kolmogorov, A.N.; Fomin, S.V. Elements of Function Theory and Functional Analysis; Fizmatlit: Moscow, Russia, 2009; 570p, ISBN 9785922102667/5922102664. [Google Scholar]
- Tarasov, V.E. Fractional probability theory of arbitrary order. Fractal Fract. 2023, 7, 137. [Google Scholar] [CrossRef]
- Vlasov, A.A. Many-Particle Theory; State Publishing House for Technical-Theoretical Literature: Moscow, Russia; Leningrad, Russia, 1950; 348p. [Google Scholar]
- Vlasov, A.A. Many-Particle Theory and Its Application to Plasma; Gordon and Breach: New York, NY, USA, 1961; ISBN 0-677-20330-6/978-0-677-20330-0. Available online: https://archive.org/details/ManyParticleTheory (accessed on 09 September 2024).
- Vlasov, A.A. Non-Local Statistical Mechanics; Nauka: Moscow, Russia, 1978; 264p. [Google Scholar]
- Vlasov, A.A. Non-Local Statistical Mechanics, 2nd ed.; Librikom, Editorial URSS: Moscow, Russia, 2017; 264p, ISBN 978-5-397-05991-6. [Google Scholar]
- Vlasov, A.A. Statistical Distribution Functions. Nauka: Moscow, Russia, 1966; 356p, ISBN 978-5-9710-1164-4. [Google Scholar]
- Vlasov, A.A. Statistical Distribution Functions, 2nd ed.; Librikom, Editorial URSS: Moscow, Russia, 2014; 360p, ISBN 978-5-9710-1164-4. [Google Scholar]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. Wien Akad. Sitzungsber. 1874, 70, 275–306. (In German) [Google Scholar]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. Ann. Phys. Chem. Erganzungsband VII 1876, 7, 624–654. (In German) [Google Scholar]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, UK, 2012; Volume 1, pp. 616–644, (In German). [Google Scholar] [CrossRef]
- Boltzmann, L. Theory of elastic aftereffect [Zur Theorie der elastischen Nachwirkung]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, UK, 2012; Volume 2, pp. 318–320, (In German). [Google Scholar] [CrossRef]
- Boltzmann, L. On some problems of the theory of elastic aftereffect and on a new method to observe vibrations by means of mirror reading, without burdening the vibrating body with a mirror of considerable mass [Uber einige Probleme der Theorie der elastischen Nachwirkung und uber eine neue Methode, Schwingungen mittels Spiegelablesung zu beobachten, ohne den schwingenden Korper mit einem Spiegel von erheblicher Masse zu belasten]. In Wissenschaftliche Abhandlungen; Hasenohrl, F., Ed.; Cambridge University Press: Cambridge, UK, 2012; Volume 2, pp. 224–249, (In German). [Google Scholar] [CrossRef]
- Volterra, V. On the mathematical theory of hereditary phenomena [Sur la theorie mathematique des phenomenes hereditaires]. J. Math. Pures Appl. 1928, 7, 249–298. (In French) [Google Scholar]
- Volterra, V. Functional theory applied to hereditary phenomena [La teoria dei funzionali applicata ai fenomeni ereditari]. Proc. Int. Congr. Math. Bologna 1928, 1, 215–232. (In Italian) [Google Scholar]
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Blackie and Son Ltd.: London, UK; Glasgow, UK, 1930; 226p. [Google Scholar]
- Mathematical Works: Memories and Notes [Opere Matematiche: Memorie e Note]. Vito Volterra; Pubblicate a Cura Dell’Accademia Nazionale dei Lincei col Concorso del Consiglio Nazionale Delle Ricerche; 5: 1926–1940; Vito Volterra; corredato dall’Elenco cronologico generale delle pubblicazioni; Accademia Nazionale dei Lincei: Roma, Italy, 1962; 538p. (In Italian)
- Volterra, V. Theory of Functionals and of Integral and Integro-Differential Equations; Dover: New York, NY, USA, 2005; 288p, ISBN 978-0486442846. [Google Scholar]
- Wang, C.C. The principle of fading memory. Arch. Ration. Mech. Anal. 1965, 18, 343–366. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. A general theory of dissipation in materials with memory. Arch. Ration. Mech. Anal. 1967, 27, 255–274. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. Norms and semi-groups in the theory of fading memory. Arch. Ration. Mech. Anal. 1966, 23, 87–123. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mizel, V.J. On the general theory of fading memory. Arch. Ration. Mech. Anal. 1968, 29, 18–31. [Google Scholar] [CrossRef]
- Saut, J.C.; Joseph, D.D. Fading memory. Arch. Ration. Mech. Anal. 1983, 81, 53–95. [Google Scholar] [CrossRef]
- Day, W.A. Thermodynamics based on a work axiom. Arch. Ration. Mech. Anal. 1968, 31, 1–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, V.E. Non-Additivity and Additivity in General Fractional Calculus and Its Physical Interpretations. Fractal Fract. 2024, 8, 535. https://doi.org/10.3390/fractalfract8090535
Tarasov VE. Non-Additivity and Additivity in General Fractional Calculus and Its Physical Interpretations. Fractal and Fractional. 2024; 8(9):535. https://doi.org/10.3390/fractalfract8090535
Chicago/Turabian StyleTarasov, Vasily E. 2024. "Non-Additivity and Additivity in General Fractional Calculus and Its Physical Interpretations" Fractal and Fractional 8, no. 9: 535. https://doi.org/10.3390/fractalfract8090535
APA StyleTarasov, V. E. (2024). Non-Additivity and Additivity in General Fractional Calculus and Its Physical Interpretations. Fractal and Fractional, 8(9), 535. https://doi.org/10.3390/fractalfract8090535