On Product Neutrosophic Fractal Spaces and α-Density Theory with Arbitrarily Small and Controlled Error
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (i)
- (iii)
- is continuous;
- (iv)
- (v)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vi)
- are continuous;
- (i)
- is complete;
- (ii)
- The standard IFMS induced by is complete;
- (iii)
- The IFMS is complete.
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- is continuous;
- (vii)
- (viii)
- (iv)
- (x)
- (xi)
- is continuous;
- (xii)
- (xiii)
- (xiv)
- (xv)
- (xvi)
- is continuous;
- (1)
- A sequence converges to if and as
- (2)
- A sequence is known as a Cauchy sequence if for each and each there exists such that and for all
- (3)
- If every Cauchy sequence is convergent in with respect to Then, it is known as complete NMS.
- (4)
- is said to be compact if every sequence has a convergent subsequence.
3. α-Dense Curves and Densifiable Sets
- (i)
- is decreasing;
- (ii)
- (iii)
- (i)
- (ii)
- for each there is such that for every
- (i)
- (ii)
- for any there is such that
4. Approximating Neutrosophic Fractals by Densifiability Techniques
5. Product Neutrosophic Fractal Space
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havlin, S.; Buldyrev, S.V.; Goldberger, A.L.; Mantegna, R.N.; Ossadnik, S.M.; Peng, C.K.; Simons, M.; Stanley, H.E. Fractals in biology and medicine. Chaos Solitons Fractals 1995, 6, 171–201. [Google Scholar] [CrossRef] [PubMed]
- Laskin, N. Fractals and quantum mechanics. Chaos Interdiscip. J. Nonlinear Sci. 2000, 10, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Kocić, L.M. Fractals and their applications in computer graphics. Filomat 1995, 9, 207–231. [Google Scholar]
- Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Rajkumar, M.; Uthayakumar, R. Fractal transforms for fuzzy valued images. Int. J. Nonlinear Anal. Appl. 2021, 12, 856–868. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Türkarslan, E.; Ünver, M.; Olgun, M. q-Rung orthopair fuzzy topological spaces. Lobachevskii J. Math. 2021, 42, 470–478. [Google Scholar] [CrossRef]
- Kramosil, I.; Michálek, J. Fuzzy metrics and statistical metric spaces. Kybernetika 1975, 11, 336–344. [Google Scholar]
- Park, J.H. Intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2004, 22, 1039–1046. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Çoker, D. An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets Syst. 1997, 88, 81–89. [Google Scholar] [CrossRef]
- Easwaramoorthy, D.; Uthayakumar, R. Analysis on fractals in fuzzy metric spaces. Fractals 2011, 19, 379–386. [Google Scholar] [CrossRef]
- Easwaramoorthy, D.; Uthayakumar, R. Intuitionistic fuzzy fractals on complete and compact spaces. In International Conference on Logic, Information, Control and Computation; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–96. [Google Scholar]
- Uthayakumar, R.; Easwaramoorthy, D. Analysis on fractals in intuitionistic fuzzy metric spaces. Int. J. Math. Comput. Sci. 2012, 6, 1140–1146. [Google Scholar]
- Alihajimohammad, A.; Saadati, R. Generalized fuzzy GV-Hausdorff distance in GFGV-fractal spaces with application in integral equation. J. Inequalities Appl. 2021, 2021, 143. [Google Scholar] [CrossRef]
- Alaca, C.; Turkoglu, D.; Yildiz, C. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 2006, 29, 1073–1078. [Google Scholar] [CrossRef]
- Secelean, N.A. Countable Iterated Function Systems; LAP Lambert Academic Publishing: Saarbrucken, Germany, 2013. [Google Scholar]
- Barnsley, M.F.; Vince, A. Real projective iterated function systems. J. Geom. Anal. 2012, 22, 1137–1172. [Google Scholar] [CrossRef]
- García, G. Approximating the attractor set of countable iterated function systems by α-dense curves. Mediterr. J. Math. 2017, 14, 67. [Google Scholar] [CrossRef]
- Schweizer, B.; Sklar, A. Statistical metric spaces. Pac. J. Math 1960, 10, 313–334. [Google Scholar] [CrossRef]
- Rahmat, M.R.S.; Noorani, M.S.M. Product of fuzzy metric spaces and fixed point theorems. Int. J. Contemp. Math. Sci. 2008, 3, 703–712. [Google Scholar]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Rehoboth, NM, USA, 1998. [Google Scholar]
- Das, S.; Das, R.; Tripathy, B.C. Multi-Criteria Group Decision Making Model Using Single-Valued Neutrosophic Set. LogForum 2020, 16, 421–429. [Google Scholar] [CrossRef]
- Das, R.; Smarandache, F.; Tripathy, B.C. Neutrosophic Fuzzy Matrices and Some Algebraic Operations. Neutrosophic Sets Syst. 2020, 32, 401–409. [Google Scholar]
- Kirişci, M.; Şimşek, N. Neutrosophic metric spaces. Math. Sci. 2020, 14, 241–248. [Google Scholar] [CrossRef]
- Das, S.; Tripathy, B.C. Pairwise Neutrosophic-b-Open Set in Neutrosophic Bitopological Spaces. Neutrosophic Sets Syst. 2020, 38, 135–144. [Google Scholar]
- Tripathy, B.C.; Das, S. Pairwise Neutrosophic b-continuous function in neutrosophic bitopological spaces. Neutrosophic Sets Syst. 2021, 43, 82. [Google Scholar]
- Das, R.; Tripathy, B.C. Neutrosophic multiset topological space. Neutrosophic Sets Syst. 2020, 35, 142–152. [Google Scholar]
- Fıser, J. Numerical aspects of multivalued fractals. Fixed Point Theory 2004, 5, 249–264. [Google Scholar]
- Saleem, N.; Ahmad, K.; Ishtiaq, U.; De la Sen, M. Multivalued neutrosophic fractals and Hutchinson-Barnsley operator in neutrosophic metric space. Chaos Solitons Fractals 2023, 172, 113607. [Google Scholar] [CrossRef]
- Uthayakumar, R.; Gowrisankar, A. Fractals in Product Fuzzy Metric Space. In Fractals, Wavelets, and Their Applications: Contributions from the International Conference and Workshop on Fractals and Wavelets; Springer International Publishing: Cham, Switzerland, 2014; pp. 157–164. [Google Scholar]
- Priya, M.; Uthayakumar, R. A Study on Hutchinson-Barnsley Theory in Product Intuitionistic Fuzzy Fractal Space. Fuzzy Inf. Eng. 2023, 15, 233–247. [Google Scholar] [CrossRef]
- García, G. Approximating intuitionistic fuzzy fractals by densifiability techniques. Gen. Math. 2021, 29, 3–21. [Google Scholar] [CrossRef]
- Bounemeur, A.; Chemachema, M.; Zahaf, A.; Bououden, S. Adaptive fuzzy fault-tolerant control using nussbaum gain for a class of SISO nonlinear systems with unknown directions. In Proceedings of the 4th International Conference on Electrical Engineering and Control Applications: ICEECA 2019, Constantine, Algeria, 17–19 December 2019; Springer: Singapore, 2021; pp. 493–510. [Google Scholar]
- Bounemeur, A.; Chemachema, M. Adaptive fuzzy fault-tolerant control using Nussbaum-type function with state-dependent actuator failures. Neural Comput. Appl. 2021, 33, 191–208. [Google Scholar] [CrossRef]
- Bey, O.; Chemachema, M. Finite-time event-triggered output-feedback adaptive decentralized echo-state network fault-tolerant control for interconnected pure-feedback nonlinear systems with input saturation and external disturbances: A fuzzy control-error approach. Inf. Sci. 2024, 669, 120557. [Google Scholar] [CrossRef]
- Bounemeur, A.; Chemachema, M. Finite-time output-feedback fault tolerant adaptive fuzzy control framework for a class of MIMO saturated nonlinear systems. Int. J. Syst. Sci. 2024, 1–20. [Google Scholar] [CrossRef]
- Barnsley, M.F. Fractals Everywhere; Academic Press Professional: Boston, MA, USA, 1993. [Google Scholar]
- Sagan, H. Space-Filling Curves. Springer: New York, NY, USA, 1994. [Google Scholar]
- Mora, G.; Cherruault, Y. Characterization and generation of α-dense curves. Comput. Math. Appl. 1997, 33, 83–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, K.; Ishtiaq, U.; Murtaza, G.; Popa, I.-L.; Maiz, F.M. On Product Neutrosophic Fractal Spaces and α-Density Theory with Arbitrarily Small and Controlled Error. Fractal Fract. 2025, 9, 59. https://doi.org/10.3390/fractalfract9020059
Ahmad K, Ishtiaq U, Murtaza G, Popa I-L, Maiz FM. On Product Neutrosophic Fractal Spaces and α-Density Theory with Arbitrarily Small and Controlled Error. Fractal and Fractional. 2025; 9(2):59. https://doi.org/10.3390/fractalfract9020059
Chicago/Turabian StyleAhmad, Khaleel, Umar Ishtiaq, Ghulam Murtaza, Ioan-Lucian Popa, and Fethi Mohamed Maiz. 2025. "On Product Neutrosophic Fractal Spaces and α-Density Theory with Arbitrarily Small and Controlled Error" Fractal and Fractional 9, no. 2: 59. https://doi.org/10.3390/fractalfract9020059
APA StyleAhmad, K., Ishtiaq, U., Murtaza, G., Popa, I.-L., & Maiz, F. M. (2025). On Product Neutrosophic Fractal Spaces and α-Density Theory with Arbitrarily Small and Controlled Error. Fractal and Fractional, 9(2), 59. https://doi.org/10.3390/fractalfract9020059