Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Characterization
2.2. Flush of CO2 after Rewetting of Dried Soils
2.3. Long-Term Aerobic N Mineralization
2.4. Alkaline Hydrolysis of Organic N
2.5. Modeling of N Mineralization and Hydrolysis
2.6. Statistical Analysis
3. Results
3.1. Flush of CO2
3.2. Long-Term Aerobic N Mineralization
3.3. Alkaline Hydrolysis of Organic N
3.4. Kinetic Parameter of N Mineralization and Hydrolysis
3.5. Relationship among Soil Properties, Estimated No, and Nmax Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bundy, L.G.; Meisinger, J.J. Nitrogen availability indices. In Methods of Soil Analysis, Part 2—Microbiological and Biochemical Properties; Weaver, R.W., Angle, J.S., Bottemley, P.S., Eds.; SSSA/ASA: Madison, WI, USA, 1994; pp. 951–984. [Google Scholar]
- Stanford, G.; Smith, S.J. Nitrogen mineralization potential of soils. Soil Sci. Soc. Am. Proc. 1972, 36, 465–472. [Google Scholar] [CrossRef]
- Waring, S.A.; Bremner, J.M. Ammonium Production in Soil under Waterlogged Conditions as an Index of Nitrogen Availability. Nature 1964, 201, 951–952. [Google Scholar] [CrossRef]
- Keeney, D.R.; Bremner, J.M. Determination and Isotope-Ratio Analysis of Different Forms of Nitrogen in Soils: 6. Mineralizable Nitrogen. Soil Sci. Soc. Am. J. 1967, 31, 34–39. [Google Scholar] [CrossRef]
- Stanford, G.; Carter, J.N.; Smith, S.J. Estimates of potentially mineralizable soil nitrogen based on short-term incubations. Soil Sci. Soc. Am. Proc. 1974, 38, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Gianello, C.; Bremner, J.M. A simple chemical method of assessing potentially available organic nitrogen in soils. Commun. Soil Sci. Plant Anal. 1986, 17, 195–214. [Google Scholar] [CrossRef]
- Schomberg, H.H.; Wietholter, S.; Griffin, T.S.; Reeves, D.W.; Cabrera, M.L.; Fisher, D.S.; Kitchen, N.R. Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. Soil Sci. Soc. Am. J. 2009, 73, 1575–1586. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Pershing, M.R.; Crozier, C.; Osmond, D.; Schroeder-Moreno, M. Soil-test biological activity with the flush of CO2: I. C and N characteristics of soils in corn production. Soil Sci. Soc. Am. J. 2018, 82, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, D.S. Chemical tests for potentially available nitrogen in soil. J. Sci. Food Agric. 1968, 19, 160–168. [Google Scholar] [CrossRef]
- Stanford, G. Extraction of soil organic nitrogen by autoclaving in water. II. A kinetic approach to estimating the NaOH-distillable fraction. Soil Sci. 1969, 107, 323–328. [Google Scholar] [CrossRef]
- Curtin, D.; Bearea, M.H.; Lehtoa, K.; Tregurthaa, C.; Qiua, W.; Tregurthaa, R.; Peterson, M. Rapid Assays to Predict Nitrogen Mineralization Capacity of Agricultural Soils. Soil Sci. Soc. Am. J. 2017, 81, 979–991. [Google Scholar] [CrossRef]
- Øien, A.; Selmer-Olsen, A.R. A laboratory method for evaluation of available nitrogen in soil. Acta Agric. Scand. 1980, 30, 149–156. [Google Scholar] [CrossRef]
- Xu, J.M.; Cheng, H.H.; Koskinen, W.C.; Molina, J.A.E. Characterization of potentially bioreactive soil organic carbon and nitrogen by acid hydrolysis. Nutr. Cycl. Agrosyst. 1997, 49, 267–271. [Google Scholar] [CrossRef]
- Stanford, G.; DeMar, W.H. Extraction of soil organic nitrogen by autoclaving in water. I. The NaOH-distillable fraction as an index of soil nitrogen availability. Soil Sci. 1969, 109, 203–205. [Google Scholar] [CrossRef]
- Gianello, C.; Bremner, J.M. Comparison of chemical methods of assessing potentially available organic nitrogen in soil. Comm. Soil Sci. Plant Anal. 1986, 17, 215–236. [Google Scholar] [CrossRef]
- Smith, K.A.; Li, S. Estimation of potentially mineralizable nitrogen in soil by KCl extraction: I. Comparison with pot experiments. Plant Soils 1993, 157, 167–174. [Google Scholar] [CrossRef]
- Jalil, A.; Campbell, C.A.; Schoenau, J.; Henry, J.L.; Jame, Y.W.; Laford, G.P. Assessment of two chemical extraction methods as indexes of available nitrogen. Soil Sci. Soc. Am. J. 1996, 60, 1954–1960. [Google Scholar] [CrossRef]
- Dodor, D.E.; Tabatabai, M.A. A simple alkaline hydrolysis method for estimating nitrogen mineralization potentially of soils. West Afr. J. Appl. Ecol. 2019, 27, 16–31. [Google Scholar]
- Eze, P.N. Characterization, Classification and Pedogenesis of Soils on a Legon Catena in the Accra Plains, Ghana. Ph.D. Thesis, University of Ghana, Legon, Ghana, 2008. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; SSSA/ASA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods; Klute, A., Ed.; SSSA/ASA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Mulvaney, R.L. Nitrogen–Inorganic Forms. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; SSSA/ASA: Madison, WI, USA, 1996; pp. 1123–1184. [Google Scholar]
- Dodor, D.E.; Amanor, Y.J.; Attor, F.T.; Adjadeh, T.A.; Neina, D.; Miyittah, M. Co-application of biochar and cattle manure counteract positive priming of carbon mineralization in a sandy Soil. Environ. Syst. Res. 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Dodor, D.E. Enzyme Activities in Soils as Affected by Long-Term Cropping Systems. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, 2002. Available online: http://lib.dr.iastate.edu/rtd/990 (accessed on 8 November 2022).
- Curtin, D.; Wen, G. Organic matter fractions contributing to soil nitrogen mineralization potential. Soil Sci. Soc. Am. J. 1999, 63, 410–415. [Google Scholar] [CrossRef]
- Dodor, D.E.; Tabatabai, M.A. Arylamidase activity as an index of nitrogen mineralization in soils. Comm. Soil Sci. Plant Anal. 2007, 38, 2197–2207. [Google Scholar] [CrossRef]
- Simard, R.R.; N’dayegamiyie, A. Nitrogen mineralization potential of meadow soils. Can. J. Soil Sci. 1993, 73, 27–38. [Google Scholar] [CrossRef]
- Serna, M.D.; Pomares, F. Evaluation of chemical indices of soil organic nitrogen availability in calcareous soils. Soil Sci. Soc. Am. J. 1992, 56, 1486–1491. [Google Scholar] [CrossRef]
- Wang, W.; Smith, C.J.; Chalk, P.M.; Chen, D. Evaluation of chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Sci. Soc. Am. J. 2001, 65, 368–376. [Google Scholar] [CrossRef]
- Griffin, G.F.; Laine, A.F. Nitrogen mineralization in soils previously amended with organic wastes. Agron. J. 1983, 75, 124–129. [Google Scholar] [CrossRef]
- Wang, W.J.; Smith, C.J.; Chen, D. Towards a standardized procedure for determining the potentially mineralisable nitrogen. Biol. Fertil. Soils 2003, 37, 362–374. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Al-Khafaji, A.A. Comparison of nitrogen and sulfur mineralization in soils. Soil Sci. Soc. Am. Proc. 1980, 41, 1000–1006. [Google Scholar] [CrossRef]
- Addiscott, T.M. Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soil with differing histories. J. Soil Sci. 1983, 34, 343–353. [Google Scholar] [CrossRef]
- Sharifi, M.; Zebarth, B.J.; Burton, D.L.; Grant, C.A.; Cooper, J.M. Evaluation of some indices of potentially mineralizable nitrogen soils. Soil Sci. Soc. Am. J. 2007, 71, 1233–1239. [Google Scholar] [CrossRef]
- Dodor, D.E.; Amanor, Y.J.; Asamoah-Bediako, A.; MacCarthy, D.S.; Dovie, B.D. Kinetics of carbon mineralization and sequestration of sole and/or co-amended biochar and manure in a sandy soil. Comm. Soil Sci. Plant Anal. 2019, 50, 2593–2609. [Google Scholar] [CrossRef]
- McDaniel, M.; Walters, D.; Bundy, L.; Li, X.; Drijber, R.A.; Sawyer, J.E.; Castellan, M.J.; Laboski, C.A.M.; Scharf, P.C.; Horwath, W.R. Combination of biological and chemical soil tests best predict maize nitrogen response. Agron. J. 2020, 112, 1263–1278. [Google Scholar] [CrossRef] [Green Version]
- Sowden, F.J. The forms of nitrogen in the organic matter of different horizons of soil profiles. Can. J. Soil Sci. 1958, 38, 147–154. [Google Scholar] [CrossRef]
- Stanford, G. Evaluation of ammonium release by alkaline permanganate extraction as an index of soil nitrogen availability. Soil Sci. 1978, 126, 244–253. [Google Scholar] [CrossRef]
- Greenfield, L.G. The origin and nature of organic nitrogen in soil as assessed by acidic and alkaline hydrolysis. Eur. J. Soil Sci. 2001, 52, 575–583. [Google Scholar] [CrossRef]
- Dodor, D.E.; Tabatabai, M.A. Alkaline hydrolyzable organic nitrogen as an index of nitrogen mineralization in soils: Relationship with activities of arylamidase and amidohydrolases. Comm. Soil Sci. Plant Anal. 2020, 51, 1757–1766. [Google Scholar] [CrossRef]
ID | Soil Series | Sand (g kg−1) | Silt (g kg−1) | Clay (g kg−1) | pH | Total C (g kg−1) | Total N (g kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | Org-N (g kg−1) | fCO2 a (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Nyigbenya | 600 | 50 | 350 | 6.2 | 10.5 | 1.9 | 25.9 | 25.9 | 1.8 | 64 |
2 | Nyigbenya | 670 | 55 | 275 | 5.7 | 10.8 | 1.8 | 28.0 | 31.5 | 1.7 | 103 |
3 | Nyigbenya | 825 | 25 | 150 | 6.9 | 15.9 | 5.1 | 35.0 | 37.1 | 5.0 | 102 |
4 | Toje | 550 | 50 | 400 | 6.3 | 9.6 | 1.5 | 34.3 | 37.1 | 1.4 | 53 |
5 | Toje | 575 | 75 | 350 | 5.2 | 11.0 | 2.4 | 31.5 | 39.2 | 2.3 | 108 |
6 | Toje | 550 | 75 | 375 | 4.8 | 11.4 | 3.1 | 42.7 | 46.2 | 3.0 | 128 |
7 | Adentan | 650 | 75 | 275 | 5.6 | 5.7 | 1.7 | 20.1 | 24.5 | 1.7 | 45 |
8 | Adentan | 550 | 75 | 375 | 5.5 | 8.2 | 1.4 | 25.9 | 51.1 | 1.3 | 110 |
9 | Adentan | 725 | 25 | 250 | 5.0 | 9.5 | 3.5 | 22.4 | 33.6 | 3.4 | 131 |
10 | Haatso | 700 | 75 | 225 | 6.0 | 5.7 | 2.3 | 15.9 | 17.0 | 2.3 | 83 |
11 | Haatso | 755 | 75 | 175 | 6.3 | 6.6 | 2.4 | 16.8 | 23.1 | 2.4 | 119 |
12 | Haatso | 750 | 75 | 175 | 6.4 | 6.9 | 2.8 | 26.6 | 31.5 | 2.7 | 120 |
ID | Soil Series | Nmin | Nhyd-NaOH | Nhyd-KOH | ||||||
---|---|---|---|---|---|---|---|---|---|---|
No | km | %NT | Nmax | kh | %NT | Nmax | kh | %NT | ||
1 | Nyigbenya | 142.6 | 0.077 | 7.5 | 104.3 | 0.028 | 5.5 | 123.5 | 0.166 | 7.6 |
2 | Nyigbenya | 181.1 | 0.079 | 10.1 | 185.0 | 0.036 | 10.3 | 269.0 | 0.033 | 14.9 |
3 | Nyigbenya | 205.9 | 0.089 | 4.0 | 201.2 | 0.044 | 3.9 | 235.1 | 0.080 | 4.6 |
4 | Toje | 127.2 | 0.107 | 8.5 | 142.8 | 0.024 | 9.5 | 138.0 | 0.077 | 15.9 |
5 | Toje | 159.5 | 0.102 | 6.6 | 148.9 | 0.032 | 6.2 | 261.7 | 0.074 | 11.3 |
6 | Toje | 188.0 | 0.095 | 6.1 | 188.2 | 0.046 | 6.1 | 272.1 | 0.080 | 8.4 |
7 | Adentan | 163.1 | 0.076 | 9.6 | 183.9 | 0.038 | 10.8 | 254.3 | 0.067 | 15.0 |
8 | Adentan | 191.0 | 0.081 | 13.6 | 211.5 | 0.033 | 15.1 | 268.8 | 0.064 | 19.2 |
9 | Adentan | 215.7 | 0.072 | 5.3 | 227.5 | 0.031 | 6.5 | 302.1 | 0.057 | 8.6 |
10 | Haatso | 139.8 | 0.099 | 5.0 | 173.8 | 0.041 | 6.2 | 163.0 | 0.042 | 9.4 |
11 | Haatso | 158.4 | 0.096 | 6.6 | 204.6 | 0.022 | 8.5 | 271.1 | 0.061 | 11.3 |
12 | Haatso | 187.6 | 0.081 | 6.8 | 288.4 | 0.021 | 12.5 | 371.2 | 0.045 | 16.1 |
LSD (p < 0.05) | 3.3 | 0.001 | 0.8 | 10.5 | 0.001 | 0.5 | 8.5 | 0.002 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodor, D.E.; Kamara, M.S.; Asamoah-Bediako, A.; Adiku, S.G.K.; MacCarthy, D.S.; Kumahor, S.K.; Neina, D. Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana. Nitrogen 2022, 3, 652-662. https://doi.org/10.3390/nitrogen3040043
Dodor DE, Kamara MS, Asamoah-Bediako A, Adiku SGK, MacCarthy DS, Kumahor SK, Neina D. Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana. Nitrogen. 2022; 3(4):652-662. https://doi.org/10.3390/nitrogen3040043
Chicago/Turabian StyleDodor, Daniel E., Mohamed S. Kamara, Abena Asamoah-Bediako, Samuel G. K. Adiku, Dilys S. MacCarthy, Samuel K. Kumahor, and Dora Neina. 2022. "Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana" Nitrogen 3, no. 4: 652-662. https://doi.org/10.3390/nitrogen3040043
APA StyleDodor, D. E., Kamara, M. S., Asamoah-Bediako, A., Adiku, S. G. K., MacCarthy, D. S., Kumahor, S. K., & Neina, D. (2022). Evaluation of Alkaline Hydrolyzable Organic Nitrogen as an Index of Nitrogen Mineralization Potential of Some Coastal Savannah Soils of Ghana. Nitrogen, 3(4), 652-662. https://doi.org/10.3390/nitrogen3040043