Ecological Management of the Nitrogen Cycle in Organic Farms
Abstract
:1. Introduction
2. Nitrogen Cycles in Organic Farms
3. Organic Farming Fertilizer Practices
4. Organic Matter and N Mineralization Rates
5. Nitrogen Inputs in Organic Farming
5.1. Organic Amendments
5.1.1. Composts
5.1.2. Manures
5.2. Legumes and Nitrogen Fixation
5.3. Contribution by Non-Legume Cover Crops
6. System Design: Intercropping Systems Improve N Cycles
6.1. Ecological Interactions within Species in Intercropping Systems
6.2. Nitrogen in Legume-Based Intercropping Systems
7. Management Practices That Affect the Nitrogen Cycle
7.1. Tillage
7.2. Crop Rotations Impact on N Cycles
7.3. Additional Nitrogen Management Practices
7.3.1. Agroforestry Systems
7.3.2. Integrated Crop-Livestock Systems
8. Strategies to Reduce System N Losses
8.1. Leaching
8.2. Erosion and Runoff
8.3. Emissions
9. Prospects for Managing the N Cycle under Subsistence Agriculture
10. Conclusions
Funding
Conflicts of Interest
References
- Carr, P.M.; Cavigelli, M.A.; Darby, H.; Delate, K.; Eberly, J.O.; Gramig, G.G.; Heckman, J.R.; Mallory, E.B.; Reeve, J.R.; Silva, E.M.; et al. Nutrient cycling in organic field crops in Canada and the United States. Agron. J. 2019, 111, 2769–2785. [Google Scholar] [CrossRef]
- Cassity-Duffey, K.; Cabrera, M.; Gaskin, J.; Franklin, D.; Kissel, D.; Saha, U. Nitrogen mineralization from organic materials and fertilizers: Predicting N release. Soil Sci. Soc. Am. J. 2020, 84, 522–533. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Maltais-Landry, G.; Paudel, B.R. Dynamics of soil nitrogen availability following sunn hemp residue incorporation in organic strawberry production systems. HortScience 2021, 56, 138–146. [Google Scholar] [CrossRef]
- Mohammed, Y.A.; Gesch, R.W.; Johnson, J.M.F.; Wagner, S.W. Agronomic and economic evaluations of N fertilization in maize under recent market dynamics. Nitrogen 2022, 3, 514–527. [Google Scholar] [CrossRef]
- Keeney, D.R.; Hatfield, J.L. The Nitrogen Cycle, Historical Perspective, and Current and Potential Future Concerns. In Nitrogen in the Environment: Sources, Problems, and Management, 2nd ed.; Hatfield, J.L., Follett, R.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–18. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Environmental impact of organic agriculture. Adv. Agron. 2016, 139, 99–152. [Google Scholar] [CrossRef]
- Squire, G.R.; Young, M.W.; Hawes, C. Agroecological management and increased grain legume area needed to meet nitrogen reduction targets for greenhouse gas emissions. Nitrogen 2022, 3, 539–554. [Google Scholar] [CrossRef]
- Rotz, C.A.; Taube, F.; Russelle, M.P.; Oenema, J.; Sanderson, M.A.; Wachendorf, M. Whole-farm perspectives of nutrient flows in grassland agriculture. Crop Sci. 2005, 45, 2139–2159. [Google Scholar] [CrossRef]
- Bui, D.; Nguyen, D.M. Sustainable land managements in Vietnam: Adoption determinants and income effects at farm household level. Environ. Dev. Sustain. 2022, 24, 9687–9703. [Google Scholar] [CrossRef]
- Braos, L.B.; Carlos, R.S.; Kuhnen, F.; Ferreira, M.E.; Mulvaney, R.L.; Khan, S.A.; Cruz, M.C.P.d. Predicting soil nitrogen availability for maize production in Brazil. Nitrogen 2022, 3, 555–568. [Google Scholar] [CrossRef]
- Obour, A.K.; Holman, J.D.; Assefa, Y. Grain sorghum productivity as affected by nitrogen rates and available soil water. Crop Sci. 2022, 62, 1360–1372. [Google Scholar] [CrossRef]
- Valenzuela, H.R.; Schaffer, B.; O’Hair, S.K. Shade and nitrogen influence gas exchange and growth of cocoyam (Xanthosoma sagittifolium). J. Am. Soc. Hort. Sci. 1990, 115, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
- Bendjebbar, P.; Fouilleux, E. Exploring national trajectories of organic agriculture in Africa. Comparing Benin and Uganda. J. Rural Stud. 2022, 89, 110–121. [Google Scholar] [CrossRef]
- Goulding, K.; Stockdale, E.; Watson, C. Plant nutrients in organic farming. In Organic Crop Production—Ambitions and Limitations; Kirchmann, H., Bergström, L., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 244, pp. 73–88. [Google Scholar] [CrossRef]
- Heckman, J.R.; Weil, R.; Magdoff, F. Practical steps to soil fertility for organic agriculture. In Organic Farming: The Ecological System; Francis, C., Ed.; Agronomy Monograph; American Society of Agronomy: Madison, WI, USA; Crop Science Society of America: Madison, WI, USA; Soil Science Society of America: Madison, WI, USA, 2009; Volume 54, pp. 137–172. [Google Scholar]
- Ketema, S.; Tesfaye, B.; Keneni, G.; Amsalu, B.; Beshir, B. Traditional production and utilization of cowpea in Ethiopia: A Showcase from Two Regional States. Ethiop. J. Crop Sci. 2021, 9, 203–227. [Google Scholar]
- Mikhael, A.S.; Demmallino, E.B.; Rahmadanih, M.S.S. The subsistence agriculture knowledge of the Arfak community in the Arfak Mountains, District of West Papua, Indonesia. Hong Kong J. Soc. Sci. 2021, 58, 416–423. [Google Scholar]
- Jourdain, D.; Lairez, J.; Striffler, B.; Lundhede, T. A choice experiment approach to evaluate maize farmers’ decision-making processes in Lao PDR. J. Choice Model. 2022, 44, 100366. [Google Scholar] [CrossRef]
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.R.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.T.; Cairns, J.E. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 2015, 30, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Tittonell, P.; Corbeels, M.; van Wijk, M.T.; Vanlauwe, B.; Giller, K.E. Combining organic and mineral fertilizers for integrated soil fertility management in smallholder farming systems of Kenya: Explorations using the crop-soil model FIELD. Agron. J. 2008, 100, 1511–1526. [Google Scholar] [CrossRef]
- Tei, F.; de Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Bowles, T.M.; Hollander, A.D.; Steenwerth, K.; Jackson, L.E. Tightly-coupled plant-soil nitrogen cycling: Comparison of organic farms across an agricultural landscape. PLoS ONE 2015, 10, e0131888. [Google Scholar] [CrossRef]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.J. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutr. Cycl. Agroecosyst. 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 2021, 11, 1415. [Google Scholar] [CrossRef]
- Davidson, E.A.; David, M.B.; Galloway, J.N.; Goodale, C.L.; Haeuber, R.; Harrison, J.A.; Howarth, R.W.; Jaynes, D.B.; Lowrance, R.R.; Nolan, B.T.; et al. Excess nitrogen in the US environment: Trends, risks, and solutions. Issues Ecol. Ecol. Soc. Am. 2012, 15, 1–16. [Google Scholar]
- Watson, C.A.; Atkinson, D.; Gosling, P.; Jackson, L.R.; Rayns, F.W. Managing soil fertility in organic farming systems. Soil Use Manag. 2002, 18, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.; Brito, L.M.; Mourão, I.; Coutinho, J. Nitrogen balance in organic horticultural rotations. Acta Hort. 2020, 1286, 127–134. [Google Scholar] [CrossRef]
- Valenzuela, H. The use of crop residues on the farm. CTAHR Hānai‘Ai Sustain. Agric. Newsl. Univ. Hawaii Coop. Ext. Serv. 2020, 36, 46. [Google Scholar]
- Geisseler, D.; Horwath, W.R.; Joergensen, R.G.; Ludwig, B. Pathways of nitrogen utilization by soil microorganisms-a review. Soil Biol. Biochem. 2010, 42, 2058–2067. [Google Scholar] [CrossRef]
- Snapp, S.; Wilke, B.; Gentry, L.E.; Zoellner, D. Compost legacy down-regulates biological nitrogen fixation in a long-term field experiment. Agron. J. 2017, 109, 2662–2669. [Google Scholar] [CrossRef] [Green Version]
- Cockx, E.M.; Simonne, E.H. Reduction of the Impact of Fertilization and Irrigation on Processes in the Nitrogen Cycle in Vegetable Fields with BMPs: HS948/HS201, 9/2003; University of Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Haygarth, P.M.; Bardgett, R.D.; Condron, L.M. Nitrogen and phosphorus cycles and their management. In Soil Conditions and Plant Growth; Gregory, P.J., Nortcliff, S., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2013; pp. 132–159. [Google Scholar]
- Martens, D.A. Nitrogen cycling under different soil management systems. Adv. Agron. 2001, 70, 143–192. [Google Scholar] [CrossRef]
- Silva, E.F.; Melo, M.F.; Sombra, K.E.S.; Silva, T.S.; de Freitas, D.F.; da Costa, M.E.; da Silva Santos, E.P.; da Silva, L.F.; Serra, A.P.; Neitzke, P.R. Organic nitrogen in agricultural systems. In Nitrogen Fixation; Rigobelo, E.C., Serra, A.P., Eds.; Intechopen: London, UK, 2019; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen distribution and soil microbial community characteristics in a legume–cereal intercropping system: A review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Zhang, X.M.; Liu, W.; Schloter, M.; Zhang, G.M.; Chen, Q.S.; Huang, J.H.; Li, L.H.; Elser, J.J.; Han, X.G. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS ONE 2013, 8, e76500. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.P.; Letey, J. Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Warren Raffa, D.; Migliore, M.; Campanelli, G.; Leteo, F.; Trinchera, A. Effects of faba bean strip cropping in an outdoor organic tomato system on soil nutrient availability, production, and N budget under different fertilizations. Agronomy 2022, 12, 1372. [Google Scholar] [CrossRef]
- Milkereit, J.; Geisseler, D.; Lazicki, P.; Settles, M.L.; Durbin-Johnson, B.P.; Hodson, A. Interactions between nitrogen availability, bacterial communities, and nematode indicators of soil food web function in response to organic amendments. Appl. Soil Ecol. 2021, 157, 103767. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Faty, Y.; Perdigão, S.; Ferreira, R. Influence of nitrogen sources applied by fertigation to an enriched soil with organic compost on growth, mineral nutrition, and phytochemicals content of coriander (Coriandrum sativum L.) in two successive harvests. Plants 2022, 11, 22. [Google Scholar] [CrossRef]
- Bustamante, S.C.; Hartz, T.K. Nitrogen management in organic processing tomato production: Nitrogen sufficiency prediction through early-season soil and plant monitoring. HortScience 2015, 50, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.; Valenzuela, H.R. Vegetables grown under tropical and subtropical conditions. In IFA World Fertilizer Use Manual; Wichmann, W., Ed.; International Fertilizer Industry Assoc.: Paris, France, 1992; pp. 293–338. [Google Scholar]
- Mikkelsen, R.; Hartz, T.K. Nitrogen sources for organic crop production. Better Crops 2008, 92, 16–19. [Google Scholar]
- Mylavarapu, R.; Hochmuth, G.; Liu, G. UF/IFAS Standardized Nutrient Recommendations for Vegetable Crop Production in Florida. Univ. Florida IFAS Coop. Ext. Serv. 2021, 12, CIR1152. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Jones, C.A. Diagnostic techniques for nutritional disorders. In Growth and Mineral Nutrition of Field Crops, 3rd ed.; Fageria, N.K., Baligar, V.C., Jones, C.A., Eds.; Marcell Dekker: New York, NY, USA, 2011; pp. 81–124. [Google Scholar]
- Gaskin, J.; Kissel, D.; Harris, G.; Boyhan, G. How to Convert an Inorganic Fertilizer Recommendation to an Organic One; The University of Georgia, Cooperative Extension Service: Athens, GA, USA, 2014; Circular No. 853. [Google Scholar]
- Louarn, G.; Bedoussac, L.; Gaudio, N.; Journet, E.P.; Moreau, D.; Jensen, E.S.; Justes, E. Plant nitrogen nutrition status in intercrops—A review of concepts and methods. Eur. J. Agron. 2021, 124, 126229. [Google Scholar] [CrossRef]
- Setyorini, D.; Hartatik, W. Nutrients balance under organic rice farming system in Central Java, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 648, p. 012154. [Google Scholar]
- Horwath, W.R. The importance of soil organic matter in the fertility of organic production systems. In Proceedings of the California Organic Production and Farming in the New Millennium: A Research Symposium, Berkeley, CA, USA, 15 July 2004; pp. 8–12. [Google Scholar]
- Gaskell, M.; Smith, R. Nitrogen sources for organic vegetable crops. HortTechnology 2007, 17, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Carr, P.M.; Cavigelli, M.A.; Darby, H.; Delate, K.; Eberly, J.O.; Fryer, H.K.; Gramig, G.G.; Heckman, J.R.; Mallory, E.B.; Reeve, J.R.; et al. Green and animal manure use in organic field crop systems. Agron. J. 2020, 112, 648–674. [Google Scholar] [CrossRef] [Green Version]
- Carucci, F.; Gatta, G.; Gagliardi, A.; de Vita, P.; Bregaglio, S.; Giuliani, M.M. Agronomic strategies to improve N efficiency indices in organic durum wheat grown in Mediterranean area. Plants 2021, 10, 2444. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen Use Efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, H.R.; DeFrank, J. Agroecology of tropical underground crops for small-scale agriculture. Crit. Rev. Plant Sci. 1995, 14, 213–238. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Østergård, H.; Lammerts van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Bellows, B.C. Soil Management: National Organic Program Regulations; IP-270; ATTRA National Sustainable Agriculture Information Service: Fayetteville, AR, USA, 2005. [Google Scholar]
- Smith, R. Cover crops as a soil management practice to improve nitrogen Nutrition for organic vegetable production. In Proceedings of the California Organic Production and Farming in the New Millennium: A Research Symposium, California Conference on Biological Control CCBC IV, Berkeley, CA, USA, 13–15 July 2004; pp. 21–26. [Google Scholar]
- Poudel, D.D.; Horwath, W.R.; Mitchell, J.P.; Temple, S.R. Impacts of cropping systems on soil nitrogen storage and loss. Agric. Syst. 2001, 68, 253–268. [Google Scholar] [CrossRef]
- Kong, D.; Ren, C.; Yang, G.; Liu, N.; Sun, J.; Zhu, J.; Ren, G.; Feng, Y. Long-term wheat-soybean rotation and the effect of straw retention on the soil nutrition content and bacterial community. Agronomy 2022, 12, 2126. [Google Scholar] [CrossRef]
- Adhikari, K.; Smith, D.R.; Hajda, C.; Owens, P.R. Can soil health explain grain quality? A case study of a corn field in Texas. Agric. Environ. Lett. 2022, 7, e20078. [Google Scholar] [CrossRef]
- Gomiero, T.; Pimentel, D.; Paoletti, M.G. Environmental impact of different agricultural management practices: Conventional vs. organic agriculture. Crit. Rev. Plant Sci. 2011, 30, 95–124. [Google Scholar] [CrossRef]
- Cabrera, M.L.; Kissel, D.E. Evaluation of a method to predict nitrogen mineralized from soil organic matter under field conditions. Soil Sci. Soc. Am. J. 1988, 52, 1027–1031. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Stockdale, E.A.; Shepherd, M.A.; Powlson, D.S. Nitrogen mineralization in temperate agricultural soils: Processes and measurement. Adv. Agron. 1996, 57, 187–235. [Google Scholar] [CrossRef]
- Hochmuth, G. Soil organic matter can lower fertilizer bills. Veg. Newsl. Veg. Crops Ext. Publ. Univ. Fla. 1991, 91–111. [Google Scholar]
- Stadler, C.; von Tucher, S.; Schmidhalter, U.; Gutser, R.; Heuwinkel, H. Nitrogen release from plant-derived and industrially processed organic fertilizers used in organic horticulture. J. Plant Nutr. Soil Sci. 2006, 169, 549–556. [Google Scholar] [CrossRef]
- Dion, P.P.; Thériault, M.; Hunt, D.; Bittman, S.; Pepin, S.; Dorais, M. NLOS-OG: A management tool for nitrogen fertilization in organic greenhouses. In Proceedings of the International Symposium on Advanced Technologies and Management for Innovative Greenhouses, Angers, France, 16–20 June 2019; pp. 1093–1098. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of agricultural practices on bacterial community of cultivated soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
- Quaye, A.K.; Doe, E.K.; Amon-Armah, F.; Arthur, A.; Dogbatse, J.A.; Konlan, S. Predictors of integrated soil fertility management practice among cocoa farmers in Ghana. J. Agric. Food Res. 2021, 5, 100174. [Google Scholar] [CrossRef]
- Maynard, D.N.; Hochmuth, G.J. Knott’s Handbook for Vegetable Growers, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; 621p. [Google Scholar]
- Heckman, J. Nitrogen Availability from Some Natural Organic Fertilizers; Plant & Pest Advisory Newsl. Organic Farming Edition; Rutgers Coop. Ext. Service: Camden, NJ, USA, 2001. [Google Scholar]
- Forge, T.; Neilsen, G.; Neilsen, D.; Hogue, E.; Faubion, D. Composted dairy manure and alfalfa hay mulch affect soil ecology and early production of ‘Braeburn’ apple on M. 9 rootstock. HortScience 2013, 48, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Baldock, J.A.; Creamer, C.; Szarvas, S.; McGowan, J.; Carter, T.; Farrell, M. Linking decomposition rates of soil organic amendments to their chemical composition. Soil Res. 2021, 59, 630–643. [Google Scholar] [CrossRef]
- Gaskell, M. Agronomic and Economic Evaluation of Organic Nitrogen Fertilizer Materials. Central Coast Agriculture Highlights Newsletter; University of California Cooperative Extension Serivce: Los Angeles, CA, USA, 1999. [Google Scholar]
- Ruiz Diaz, D.A.; Sawyer, J.E. Plant-available nitrogen from poultry manure as affected by time of application. Agron. J. 2008, 100, 1318–1326. [Google Scholar] [CrossRef]
- Cadisch, G.; Handayanto, E.; Malama, C.; Seyni, F.; Giller, K.E. N recovery from legume prunings and priming effects are governed by the residue quality. Plant Soil 1998, 205, 125–134. [Google Scholar] [CrossRef]
- Maul, J.; Mirsky, S.; Emche, S.; Devine, T. Evaluating a germplasm collection of the cover crop hairy vetch for use in sustainable farming systems. Crop Sci. 2011, 51, 2615–2625. [Google Scholar] [CrossRef]
- Yang, X.M.; Drury, C.F.; Reynolds, W.D.; Phillips, L.A. Nitrogen release from shoots and roots of crimson clover, hairy vetch, and red clover. Can. J. Soil Sci. 2020, 100, 179–188. [Google Scholar] [CrossRef]
- Severino, L.S.; Costa, F.X.; de Macêdo Beltrão, N.E.; de Lucena, A.M.A.; Guimarães, M.M. Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. Rev. Biol. Ciências Terra 2004, 5, 1–6. [Google Scholar]
- Llimós, M.; Segarra, G.; Sancho-Adamson, M.; Trillas, M.I.; Romanyà, J. Impact of olive saplings and organic amendments on soil microbial communities and effects of mineral fertilization. Front. Microbiol. 2021, 12, 653027. [Google Scholar] [CrossRef]
- Vasconcelos, M.W.; Grusak, M.A.; Pinto, E.; Gomes, A.; Ferreira, H.; Balázs, B.; Centofanti, T.; Ntatsi, G.; Savvas, D.; Karkanis, A.; et al. The biology of legumes and their agronomic, economic, and social Impact. In The Plant Family Fabaceae; Springer: Singapore, 2020; pp. 3–25. [Google Scholar]
- Garcia, M.E. Assessing and Supplying Fertilizer Needs Under Organic Systems. Southern SARE Presentation; Horticulture Dept. Univ. Arkansas: Fayetteville, AR, USA, 2010. [Google Scholar]
- Araújo Neto, S.E.D.; Campos, P.A.; Tavella, L.B.; Solino, A.J.D.S.; Silva, I.F.D. Organic polyculture of passion fruit, pineapple, corn and cassava: The influence of green manure and distance between espaliers. Ciênc. Agrotecnologia 2014, 38, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Neina, D.; Buerkert, A.; Joergensen, R.G. Potential mineralizable N and P mineralization of local organic materials in tantalite mine soils. Appl. Soil Ecol. 2016, 108, 211–220. [Google Scholar] [CrossRef]
- Howeler, R.H.; Tongglum, A.; Jantawat, S.; Utomo, W.H. The use of forages for soil fertility maintenance and erosion control in cassava in Asia. In Proceedings of the 3rd Regional Meeting of the Forages for Smallholder Project, Samarinda, Indonesia, 23–26 March 1998; pp. 196–211. [Google Scholar]
- Dinesh, R.; Suryanarayana, M.A.; Nair, A.K.; Ghoshal Chaudhuri, S. Leguminous cover crop effects on nitrogen mineralization rates and kinetics in soils. J. Agron. Crop Sci. 2001, 187, 161–166. [Google Scholar] [CrossRef]
- Sasa, S.R. Mulches in Smallholder Maize Systems in the Limpopo Province of South Africa: Untangling the Effects of N through Experimentation and Simulation. Doctoral Dissertation, University of Adelaide, Adelaide, SA, Australia, 2010. [Google Scholar]
- Calegari, A.; Diversificação de Sistemas Produtivos Através Do Uso Adequado de Plantas de Cobertura, Rotação de Culturas No Sistema Plantio Direto. Research Agricultural Institute, IAPAR, BR. Londrina. 2010. Available online: https://www.researchgate.net/publication/341193469 (accessed on 1 November 2022).
- Valenzuela, H.R.; Smith, J. CTAHR Sustainable Agriculture Green Manure Crops Series: Cowpeas; SA-GM-6; University of Hawaii: Honolulu, HI, USA, 2002. [Google Scholar]
- García, M.; Treto, E.; Alvarez, M.; Fernández, L.; Hernández, T. Estudio comparativo de diferentes especies de abonos verdes y cuantificación del aporte de nitrógeno en el cultivo de la calabaza. Cult. Trop. 1996, 17, 9–16. [Google Scholar]
- Oglesby, K.A.; Fownes, J.H. Effects of chemical composition on nitrogen mineralization from green manures of seven tropical leguminous trees. Plant Soil 1992, 143, 127–132. [Google Scholar] [CrossRef]
- Valenzuela, H.R.; Smith, J. CTAHR Sustainable Agriculture Green Manure Crops Series: ‘Tropic Sun’ Sunn hemp; SA-GM-11; University of Hawaii: Honolulu, HI, USA, 2002. [Google Scholar]
- Ståhl, L. Planted Tree Fallows and Their Influence on Soil Fertility and Maize Production in East Africa: Nitrogen Fixation and Soil Nitrogen Dynamics. Doctoral Thesis, Swedish University of Agricultural Sciences, Umea, Sweden, 2005. [Google Scholar]
- Melchor Marroquín, I.; Vargas Hernández, J.; Velázquez Martínez, A.; Etchevers Barra, J. Aboveground biomass production and nitrogen content in Gliricidia sepium (Jacq.) Walp. Under several pruning regimes. Interciencia 2005, 30, 151–158. [Google Scholar]
- Valenzuela, H.R.; Smith, J. CTAHR Sustainable Agriculture Green Manure Crops Series: Lablab; SA-GM-7; University of Hawaii: Honolulu, HI, USA, 2002. [Google Scholar]
- Wang, G.S.; Noite, K. Summer Cover Crop Use in Arizona Vegetable Production Systems; Bulletin AZ1519; Arizona Cooperative Extension Service: Tucson, AZ, USA, 2010. [Google Scholar]
- Köpke, U. Legume nitrogen in crop rotation: Reducing losses-increasing precrop effects. In Symbiotic Nitrogen Fixation in Crop Rotations with Manure Fertilization, Proceedings of the Third Meeting in Copenhagen, Denmark, 4–5 March 1996; Raupp, J., Ed.; Institute for Biodynamic Research: Darmstadt, Germany, 1996; Volume 8, pp. 32–51. ISBN 3-928949-07-1. [Google Scholar]
- Nyambati, E.M. Management and Nutritive Evaluation of Mucuna Pruriens and Lablab Purpureus-Maize Intercrops in the Sub-Humid Highlands of Northwestern Kenya. Ph.D. Dissertation, University of Florida, Gainesville, FL, USA, 2002. [Google Scholar]
- Matos, E.D.S.; Mendonça, E.D.S.; Cardoso, I.M.; Lima, P.C.D.; Freese, D. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems. Rev. Brasi. Ciênc. Solo 2011, 35, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Khan, F.; Ahmad, W. Effect of farmyard manure, mineral fertilizers and mung bean residues on some microbiological properties of eroded soil in district Swat. Soil Environ. 2009, 28, 162–169. [Google Scholar]
- Constantinides, M.; Fownes, J.H. Nitrogen mineralization from leaves and litter of tropical plants: Relationship to nitrogen, lignin and soluble polyphenol concentrations. Soil Biol. Biochem. 1994, 26, 49–55. [Google Scholar] [CrossRef]
- Mulvaney, M.J.; Balkcom, K.S.; Wood, C.W.; Jordan, D. Peanut residue carbon and nitrogen mineralization under simulated conventional and conservation tillage. Agron. J. 2017, 109, 696–705. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, H. Pigeon Peas: A Multipurpose Crop for Hawaii: The Food Provider CTAHR Sustainable Agriculture, Hanai‘ai Newsletter; University of Hawaii: Honolulu, HI, USA, 2011; 6p. [Google Scholar]
- Lemage, B.; Tsegaye, M.; Anmaw, Y. Evaluation and demonstration of leguminous shrubs hedgerows intercropping with maize crop. Int. J. Agric. Res. Innov. Technol. 2021, 11, 60–68. [Google Scholar] [CrossRef]
- Sainju, U.M.; Whitehead, W.F.; Singh, B.P. Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools. Can. J. Soil Sci. 2003, 83, 155–165. [Google Scholar] [CrossRef]
- Ntatsi, G.; Karkanis, A.; Tran, F.; Savvas, D.; Iannetta, P.P. Which agronomic practices increase the yield and quality of common bean (Phaseolus vulgaris L.)? A systematic review protocol. Agronomy 2020, 10, 1008. [Google Scholar] [CrossRef]
- Kocira, A.; Staniak, M.; Tomaszewska, M.; Kornas, R.; Cymerman, J.; Panasiewicz, K.; Lipińska, H. Legume cover crops as one of the elements of strategic weed management and soil quality improvement. A review. Agriculture 2020, 10, 394. [Google Scholar] [CrossRef]
- Rosenblueth, M.; Ormeño-Orrillo, E.; López-López, A.; Rogel, M.A.; Reyes-Hernández, B.J.; Martínez-Romero, J.C.; Reddy, P.M.; Martínez-Romero, E. Nitrogen fixation in cereals. Front. Microbiol. 2018, 9, 1794. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Singh, P.; Sharma, A.; Guo, D.J.; Upadhyay, S.K.; Song, Q.-Q.; Verma, K.K.; Li, D.-P.; Malviya, M.K.; Song, X.-P.; et al. Unraveling nitrogen fixing potential of endophytic diazotrophs of different Saccharum species for sustainable sugarcane growth. Int. J. Mol. Sci. 2022, 23, 6242. [Google Scholar] [CrossRef]
- Raza, A.; Zahra, N.; Hafeez, M.B.; Ahmad, M.; Iqbal, S.; Shaukat, K.; Ahmad, G. Nitrogen fixation of legumes: Biology and physiology. In The Plant Family Fabaceae; Hasanuzzaman, M., Araújo, S., Gill, S., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Ekyaligonza, D.M.; Kahigwa, T.T.; Dietrich, P.; Akoraebirungi, B.; Kagorora, J.P.; Friedel, J.K.; Melcher, A.; Freyer, B. Biomass contribution and nutrient recycling of organic matter management practices in tropical smallholder annual farming systems. Acta Agric. Scandinav. Sec. B-Soil Plant Sci. 2022, 72, 945–956. [Google Scholar] [CrossRef]
- Zhang, W.; Maxwell, T.M.R.; Robinson, B.; Dickinson, N. Legume nutrition is improved by neighbouring grasses. Plant Soil 2022, 475, 443–455. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Savvas, D. Impact of legumes as a pre-crop on nitrogen nutrition and yield in organic greenhouse tomato. Plants 2021, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- John, I.; Snapp, S.; Nord, A.; Chimonyo, V.; Gwenambira, C.; Chikowo, R. Marginal more than mesic sites benefit from groundnut diversification of maize: Increased yield, protein, stability, and profits. Agric. Ecosys. Environ. 2021, 320, 107585. [Google Scholar] [CrossRef]
- Valenzuela, H.R. Ecologically-based practices for vegetable crops production in the tropics. HortReviews 2000, 24, 139–228. [Google Scholar] [CrossRef]
- Fréville, H.; Montazeaud, G.; Forst, E.; David, J.; Papa, R.; Tenaillon, M.I. Shift in beneficial interactions during crop evolution. Evol. Appl. 2022, 15, 905–918. [Google Scholar] [CrossRef]
- Homulle, Z.; George, T.S.; Karley, A.J. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant Soil 2022, 471, 1–26. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, W.; Li, L. Intercropping: Feed more people and build more sustainable agroecosystems. Front. Agric. Sci. Eng. 2021, 8, 373–386. [Google Scholar] [CrossRef]
- Xie, Y.; Kristensen, H.L. Overwintering grass-clover as intercrop and moderately reduced nitrogen fertilization maintain yield and reduce the risk of nitrate leaching in an organic cauliflower (Brassica oleracea L. var. botrytis) agroecosystem. Sci. Hort. 2016, 206, 71–79. [Google Scholar] [CrossRef]
- Wyland, L.J.; Jackson, L.E.; Chaney, W.E.; Klonsky, K.; Koike, S.T.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosys. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- Collins, H.P.; Delgado, J.A.; Alva, A.K.; Follett, R.F. Use of Nitrogen-15 isotopic techniques to estimate nitrogen cycling from a mustard cover crop to potatoes. Agron. J. 2007, 99, 27–35. [Google Scholar] [CrossRef]
- Snapp, S.; Kebede, Y.; Wollenberg, E.; Dittmer, K.M.; Brickman, S.; Egler, C.; Shelton, S. Agroecology and Climate Change Rapid Evidence Review: Performance of Agroecological Approaches in Low- and Middle-Income Countries; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2021. [Google Scholar]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Ciaccia, C.; la Torre, A.; Ferlito, F.; Testani, E.; Battaglia, V.; Salvati, L.; Roccuzzo, G. Agroecological practices and agrobiodiversity: A case study on organic orange in southern Italy. Agronomy 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tian, Y.; Li, X.; Song, M.; Fang, X.; Jiang, Y.; Xu, X. Nitrogen fixation and transfer between legumes and cereals under various cropping regimes. Rhizosphere 2022, 22, 100546. [Google Scholar] [CrossRef]
- Shanmugam, S.; Hefner, M.; Pelck, J.S.; Labouriau, R.; Kristensen, H.L. Complementary resource use in intercropped faba bean and cabbage by increased root growth and nitrogen use in organic production. Soil Use Manag. 2022, 38, 729–740. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Xi, X.; Cong, W.F. Crop diversification reinforces soil microbiome functions and soil health. Plant Soil 2022, 476, 375–383. [Google Scholar] [CrossRef]
- Rao, M.R.; Willey, R.W. Evaluation of yield stability in intercropping: Studies on sorghum/pigeonpea. Exp. Agric. 1980, 16, 105–116. [Google Scholar] [CrossRef]
- Chai, Q.; Nemecek, T.; Liang, C.; Zhao, C.; Yu, A.; Coulter, J.A.; Wang, Y.; Hu, F.; Wang, L.; Siddique, K.H.; et al. Integrated farming with intercropping increases food production while reducing environmental footprint. Proc. Natl. Acad. Sci. USA 2021, 118, e2106382118. [Google Scholar] [CrossRef]
- Rui, L.I.U.; Zhou, G.P.; Chang, D.N.; Gao, S.J.; Mei, H.A.N.; Zhang, J.D.; Sun, X.F.; Cao, W.D. Transfer characteristics of nitrogen fixed by leguminous green manure crops when intercropped with maize in northwestern China. J. Integ. Agric. 2022, 21, 1177–1187. [Google Scholar] [CrossRef]
- Schwerdtner, U.; Spohn, M. Plant species interactions in the rhizosphere increase maize N and P acquisition and maize yields in intercropping. J. Soil Sci. Plant Nutr. 2022, 22, 3868–3884. [Google Scholar] [CrossRef]
- He, X.H.; Critchley, C.; Bledsoe, C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit. Rev. Plant Sci. 2003, 22, 531–567. [Google Scholar] [CrossRef]
- Hupe, A.; Naether, F.; Haase, T.; Bruns, C.; Heß, J.; Dyckmans, J.; Joergensen, R.G.; Wichern, F. Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Sci. Rep. 2021, 11, 11424. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, A.; Wang, F.; Han, X.; Wang, D.; Li, S. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front. Plant Sci. 2015, 6, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.; Li, L.; Wang, D.; Zhao, P.; Tang, L.; Zhou, Y.; Yin, X. Nitrogen levels regulate intercropping-related mitigation of potential nitrate leaching. Agric. Ecosyst. Environ. 2021, 319, 107540. [Google Scholar] [CrossRef]
- Goulart, J.M.; Guerra, J.G.M.; Espindola, J.A.A.; Araújo, E.D.S.; Rouws, J.R. Shrub legume green manure intercropped with maize preceding organic snap bean cultivation. Hortic. Bras. 2021, 39, 319–323. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Gecaite, V.; Toleikiene, M.; Šarūnaite, L.; Kadžiuliene, Ž. Soil nitrate nitrogen content and grain yields of organically grown cereals as affected by a strip tillage and forage legume intercropping. Plants 2021, 10, 1453. [Google Scholar] [CrossRef]
- Stein, S.; Hartung, J.; Möller, K.; Zikeli, S. The effects of leguminous living mulch intercropping and its growth management on organic cabbage yield and biological nitrogen fixation. Agronomy 2022, 12, 1009. [Google Scholar] [CrossRef]
- Edwards, C.A.; Grove, T.L.; Harwood, R.R.; Colfer, C.P. The role of agroecology and integrated farming systems in agricultural sustainability. Agric. Ecosyst. Environ. 1993, 46, 99–121. [Google Scholar] [CrossRef]
- Pittarello, M.; Chiarini, F.; Menta, C.; Furlan, L.; Carletti, P. Changes in soil quality through conservation agriculture in north-eastern Italy. Agriculture 2022, 12, 1007. [Google Scholar] [CrossRef]
- Carr, P.M.; Gramig, G.G.; Liebig, M.A. Impacts of organic zero tillage systems on crops, weeds, and soil quality. Sustainability 2013, 5, 3172–3201. [Google Scholar] [CrossRef] [Green Version]
- Rusinamhodzi, L.; Corbeels, M.; Nyamangara, J.; Giller, K.E. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Res. 2012, 136, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Henneron, L.; Bernard, L.; Hedde, M.; Pelosi, C.; Villenave, C.; Chenu, C.; Bertrand, M.; Girardin, C.; Blanchart, E. Fourteen years of evidence for positive effects of conservation agriculture and organic farming on soil life. Agron. Sustain. Dev. 2015, 35, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Yagioka, A.; Komatsuzaki, M.; Kaneko, N. The effect of minimum tillage with weed cover mulching on organic daikon (Raphanus sativus var. longipinnatus cv. Taibyousoufutori) yield and quality and on soil carbon and nitrogen dynamics. Biol. Agric. Hortic. 2014, 30, 228–242. [Google Scholar] [CrossRef]
- Dewi, R.K.; Fukuda, M.; Takashima, N.; Yagioka, A.; Komatsuzaki, M. Soil carbon sequestration and soil quality change between no-tillage and conventional tillage soil management after 3 and 11 years of organic farming. Soil Sci. Plant Nutr. 2022, 68, 133–148. [Google Scholar] [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Vincent-Caboud, L.; Peigné, J.; Casagrande, M.; Silva, E.M. Overview of organic cover crop-based no-tillage technique in Europe: Farmers’ practices and research challenges. Agriculture 2017, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.E.; Eltun, R.; Gooding, M.J.; Jensen, E.S.; Köpke, U. (Eds.) Designing and Testing Crop Rotations for Organic Farming. In Proceedings from an International Workshop; DARCOF Report No. 1; Danish Research Centre for Organic Farming: Tjele, Denmark, 1999; 350p. [Google Scholar]
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floch, J.-B.; Hamel, C.; Siddique, K.H.M.; Li, L.L.; et al. Diversifying crop rotations enhances agroecosystem services and resilience. Adv. Agron. 2022, 173, 299–335. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [Green Version]
- Bajgai, Y.; Kristiansen, P.; Hulugalle, N.; McHenry, M. Comparison of organic and conventional managements on yields, nutrients and weeds in a corn–cabbage rotation. Renew. Agric. Food Syst. 2015, 30, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Zerihun, A.; Haile, D. The effect of organic and inorganic fertilizers on the yield of two contrasting soybean varieties and residual nutrient effects on a subsequent finger millet crop. Agronomy 2017, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A. Ethnoscience and biodiversity: Key elements in the design of sustainable pest management systems for small farmers in developing countries. Agric. Ecosyst. Environ. 1993, 46, 257–272. [Google Scholar] [CrossRef]
- Altieri, M.A.; Koohafkan, P. Globally Important Ingenious Agricultural Heritage Systems (GIAHS): Extent, significance, and implications for development. In Proceedings of the Second International Workshop and Steering Committee Meeting for the Globally Important Agricultural Heritage Systems (GIAHS) Project, Rome, Italy, 7–9 June 2004; pp. 7–9. [Google Scholar]
- Bationo, A.; Lompo, F.; Koala, S. Research on nutrient flows and balances in West Africa: State-of-the-art. Agric. Ecosyst. Environ. 1998, 71, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Glover, N.; Beer, J. Nutrient cycling in two traditional Central American agroforestry systems. Agrofor. Syst. 1986, 4, 77–87. [Google Scholar] [CrossRef]
- Piato, K.; Subía, C.; Lefort, F.; Pico, J.; Calderón, D.; Norgrove, L. No reduction in yield of young robusta coffee when grown under shade trees in Ecuadorian Amazonia. Life 2022, 12, 807. [Google Scholar] [CrossRef]
- Sharma, U.; Bhardwaj, D.R.; Sharma, S.; Sankhyan, N.; Thakur, C.L.; Rana, N.; Sharma, S. Assessment of the efficacy of various mulch materials on improving the growth and yield of ginger (Zingiber officinale) under bamboo-based agroforestry system in NW-Himalaya. Agrofor. Syst. 2022, 96, 925–940. [Google Scholar] [CrossRef]
- Mukuralinda, A.; Tenywa, J.S.; Verchot, L.; Obua, J.; Namirembe, S. Decomposition and phosphorus release of agroforestry shrub residues and the effect on maize yield in acidic soils of Rubona, southern Rwanda. Nutr. Cycl. Agroecosystems 2009, 84, 155–166. [Google Scholar] [CrossRef]
- Hartemink, A.E.; O’Sullivan, J.N. Leaf litter decomposition of Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. Plant Soil 2001, 230, 115–124. [Google Scholar] [CrossRef]
- Wagger, M.G.; Cabrera, M.L.; Ranells, N.N. Nitrogen and carbon cycling in relation to cover crop residue quality. J. Soil Water Conserv. 1998, 53, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.S. Organic farming: Status, issues and prospects—A review. Agric. Econ. Res. Rev. 2010, 23, 343–358. [Google Scholar] [CrossRef]
- Chivian, E.; Bernstein, A. Genetically modified foods and organic farming. In Sustaining Life: How Human Health Depends on Biodiversity; Chivian, E., Bernstein, A., Eds.; Oxford University Press: New York, NY, USA, 2008; Chapter 9; pp. 383–405. [Google Scholar]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Behera, U.K.; Yates, C.M.; Kebreab, E.; France, J. Farming systems methodology for efficient resource management at the farm level: A review from an Indian perspective. J. Agric. Sci. 2008, 146, 493–505. [Google Scholar] [CrossRef]
- Seo, S.N. Is an integrated farm more resilient against climate change? A micro-econometric analysis of portfolio diversification in African agriculture. Food Policy 2010, 35, 32–40. [Google Scholar] [CrossRef]
- Portilho, I.I.R.; Savin, M.C.; Borges, C.D.; Tsai, S.M.; Mercante, F.M.; Roscoe, R.; de Carvalho, L.A. Maintenance of N cycling gene communities with crop-livestock integration management in tropical agriculture systems. Agric. Ecosyst. Environ. 2018, 267, 52–62. [Google Scholar] [CrossRef]
- Moraes, J.M.; Denardin, L.G.D.O.; Pires, G.C.; Gonçalves, E.C.; Silva, L.S.; Pacheco, L.P.; Wruck, F.J.; Carneiro, M.A.; Carvalho, P.C.D.F.; Souza, E.D. Grass-legume intercropping in integrated crop-livestock systems: A strategy to improve soil quality and soybean yield in the Brazilian Cerrado. Res. Sq. 2021, preprint. [Google Scholar] [CrossRef]
- Wilkins, R.J. Eco-efficient approaches to land management: A case for increased integration of crop and animal production systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Valani, G.P.; Martíni, A.F.; da Silva, L.F.S.; Bovi, R.C.; Cooper, M. Soil quality assessments in integrated crop-livestock-forest systems: A review. Soil Use Manag. 2021, 37, 22–36. [Google Scholar] [CrossRef]
- Kramer, S.B.; Reganold, J.P.; Glover, J.D.; Bohannan, B.J.; Mooney, H.A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc. Natl. Acad. Sci. USA 2006, 103, 4522–4527. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Li, S.X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Adv. Agron. 2019, 156, 159–217. [Google Scholar] [CrossRef]
- Auerswald, K.; Kainz, M.; Fiener, P. Soil erosion potential of organic versus conventional farming evaluated by USLE modelling of cropping statistics for agricultural districts in Bavaria. Soil Use Manag. 2003, 19, 305–311. [Google Scholar] [CrossRef]
- Seitz, S.; Goebes, P.; Puerta, V.L.; Pereira, E.I.P.; Wittwer, R.; Six, J.; van der Heijden, M.G.; Scholten, T. Conservation tillage and organic farming reduce soil erosion. Agron. Sustain. Dev. 2019, 39, 4. [Google Scholar] [CrossRef] [Green Version]
- Koomson, E. Benefits and trade-offs of legume-led crop rotations on crop performance and soil erosion at various scales in SW Kenya. Ph.D. Dissertation, University of Hohenheim, Stuttgart, Germany, 2021. Available online: http://opus.uni-hohenheim.de/volltexte/2021/1890/pdf/Doctoral_dissertation_Eric_Koomson_April_2021.pdf (accessed on 21 November 2022).
- Tu, T.C.; Hai, P.S.; Truc, H.C.; Trung, P.Q.; Huong, N.T. Study on effect of cultivating measures to soil erosion and coffee growth on sloping land in Dak Lak province of Vietnam. Int. J. Res. Agric. Sci. 2021, 8, 87–94. [Google Scholar]
- Xia, L.; Liu, G.; Wu, Y.; Ma, L.; Li, Y. Protection methods to reduce nitrogen and phosphorus losses from sloping citrus land in the Three Gorges area of China. Pedosphere 2015, 25, 478–488. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Q.; Li, Y.; Zeng, M.; Li, W.; Chang, C.; Xu, Y.; Huang, C. Effect of groundcovers on reducing soil erosion and non-point source pollution in citrus orchards on red soil under frequent heavy rainfall. Sustainability 2020, 12, 1146. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.R. Soil fertility management a century ago in farmers of forty centuries. Sustainability 2013, 5, 2796–2801. [Google Scholar] [CrossRef] [Green Version]
- Razafintsalama, H.; Sauvadet, M.; Trap, J.; Autfray, P.; Ripoche, A.; Becquer, T. Legume nitrogen fixation and symbioses in low-inputs rainfed rice rotations. Sustainability 2021, 13, 12349. [Google Scholar] [CrossRef]
- Norman, M.J.T. Annual Cropping Systems in the Tropics. An introduction; University Presses of Florida: Gainesville, FL, USA, 1979; 276p. [Google Scholar]
- Nandwa, S.M.; Bekunda, M.A. Research on nutrient flows and balances in East and Southern Africa: State-of-the-art. Agric. Ecosyst. Environ. 1998, 71, 5–18. [Google Scholar] [CrossRef]
- Ramos, M.L.G.; de Melo Pereira do Nascimento, R.; Silva, A.M.M.; Silva, S.B.; de Oliveira Júnior, M.P. Carbon and nitrogen stocks in cultivation systems of a Quilombola community in the Brazilian Cerrado. Reg. Environ. Change 2022, 22, 81. [Google Scholar] [CrossRef]
- Ripoche, A.; Autfray, P.; Rabary, B.; Randriamanantsoa, R.; Blanchart, E.; Trap, J.; Sauvadet, M.; Becquer, T.; Letourmy, P. Increasing plant diversity promotes ecosystem functions in rainfed rice based short rotations in Malagasy highlands. Agric. Ecosyst. Environ. 2021, 320, 107576. [Google Scholar] [CrossRef]
- Andriesse, J.P.; Schelhaas, R.M. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. III. The effects of land clearing through burning on fertility level. Agric. Ecosyst. Environ. 1987, 19, 311–332. [Google Scholar] [CrossRef]
- Andriesse, J.P.; Schelhaas, R.M. A monitoring study on nutrient cycles in soils used for shifting cultivation under various climatic conditions in tropical Asia. II. Nutrient stores in biomass and soil-results of baseline studies. Agric. Ecosyst. Environ. 1987, 19, 285–310. [Google Scholar] [CrossRef]
- Biswas, A.; Alamgir, M.; Haque, S.M.S.; Osman, K.T. Study on soils under shifting cultivation and other land use categories in Chittagong Hill Tracts, Bangladesh. J. For. Res. 2012, 23, 261–265. [Google Scholar] [CrossRef]
- Achmad, B.; Siarudin, M.; Widiyanto, A.; Diniyati, D.; Sudomo, A.; Hani, A.; Fauziyah, E.; Suhaendah, E.; Widyaningsih, T.S.; Handayani, W.; et al. Traditional subsistence farming of smallholder agroforestry systems in Indonesia: A review. Sustainability 2022, 14, 8631. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Leakey, R.R.; Rao, M.R.; Reynolds, L. Agroforestry and the mitigation of land degradation in the humid and sub-humid tropics of Africa. Exp. Agric. 1996, 32, 235–290. [Google Scholar] [CrossRef]
- Ngosong, C.; Okolle, J.N.; Tening, A.S. Mulching: A sustainable option to improve soil health. In Soil Fertility Management for Sustainable Development; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2019; pp. 231–249. [Google Scholar] [CrossRef]
- Gebremichael, A.; Tadesse, B. Exploring soil and water conservation practices in southwestern part of Ethiopia: Quick survey and documentation. South Asian J. Agric. Sci. 2021, 1, 6–13. [Google Scholar]
- Boillat, S.; Belmin, R.; Bottazzi, P. The agroecological transition in Senegal: Transnational links and uneven empowerment. Agric. Hum. Values 2022, 39, 281–300. [Google Scholar] [CrossRef]
- Madsen, S.; Bezner Kerr, R.; LaDue, N.; Luginaah, I.; Dzanja, C.; Dakishoni, L.; Lupafya, E.; Shumba, L.; Hickey, C. Explaining the impact of agroecology on farm-level transitions to food security in Malawi. Food Secur. 2021, 13, 933–954. [Google Scholar] [CrossRef]
- Côte, F.X.; Rapidel, B.; Sourisseau, J.M.; Affholder, F.; Andrieu, N.; Bessou, C.; Caron, P.; Deguine, J.P.; Faure, G.; Hainzelin, E.; et al. Levers for the agroecological transition of tropical agriculture. Agron. Sustain. Dev. 2022, 42, 67. [Google Scholar] [CrossRef]
- Bachmann, L.; Cruzada, E.; Wright, S.L. Food Security and Farmer Empowerment: A Study of the Impacts of Farmer-Led Sustainable Agriculture in the Philippines; MASIPAG: Los Baños, Laguna, Philippines, 2009; p. 149. [Google Scholar]
- Rosset, P.M.; Altieri, M.A. Agroecology: Science and Politics; Fernwood Publishing: Black Point, NS, Canada, 2017. [Google Scholar] [CrossRef]
- HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and food Systems That Enhance Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome. 2019. Available online: https://www.fao.org/documents/card/en/c/ca5602en/ (accessed on 1 November 2022).
- Rosset, P.M.; Altieri, M.A. Agroecology versus input substitution: A fundamental contradiction of sustainable agriculture. Soc. Nat. Resour. 1997, 10, 283–295. [Google Scholar] [CrossRef]
Product 1 | N Content (%) | C/N Ratio | N Mineralization (% of Organic N Applied) | Citations |
---|---|---|---|---|
Alfalfa Hay | 2.5–3.3 | 11–21 | 65–80% (90–360 dy) | [71,72,73] |
Blood meal | 12–13 | 3.5 | 92, 60–68 (99, 60 dy) | [2,34,43,72] |
Bone meal | 4.2 | 3.5–3.8 | 25 (99 dy) | [2,72] |
Castor bean meal | 5–7.5 | 6–9 | NA 2 | [34,71,72] |
Compost | 0.7–2.5 | 11–64 | 5–55% (100–360 dy) | [2,34,50,74] |
Crop Residues (Fresh) | 1.6–4.4 | 8–24 | Variable | [74] |
Feather Meal | 14–16 | 3.6 | 78, 55–65 (99, 60 dy) | [2,43,75] |
Fish Meal | 10–14 | 4.5 | 29, 55–65 (99 dy) | [2,43,71,72,75] |
Manure, cattle, fresh | 0.8–3.2 | 16–21 | 13 (60 dy) | [34,43,71] |
Manure, poultry, fresh | 2.8–4.6 | 4–22 | 13, 60–80 (99 dy, 360 dy) | [2,34,71,76] |
Residues, legumes | 2–4.6 | 10–20.7 | 60–76 (180 dy) | [77] |
Vetch, Hairy, Vicia villosa | 3–4 | 9.8–13 | 63–80% (>70 dy) | [71,78,79] |
Species | N Fixation Rates (Kg ha−1) | Tissue N Content (%) | C/N Ratio | Biomass (t ha−1) | Citations |
---|---|---|---|---|---|
Canavalia ensiformis | 133 | 4.8 | 15 | 10–25 | [83,84,85] |
Centrosema macrocarpum | 70 | 2.2–2.5 | 18.6 | 4–6.6 | [86,87,88,89] |
Cowpea, Vigna unguiculata | 70–350 | 1.5 | 12 | 2–6 | [82,86,88,90,91] |
Faba bean, Vicia faba L. | 120–310 | 3.8 | 11 | 4.7 | [82,88] |
Gliricidia sepium | 166 | 2–5 | 10–18 | 10.5 | [77,92,93,94,95] |
Lablab purpureus | 80–140 | 2.2–4.2 | 11–34 | 2.5–10 | [86,91,96,97] |
Mucuna pruriens | 150–230 | 2.2–2.5 | 12.3 | 2–8 | [88,91,98,99,100] |
Mungbean, Vigna radiata | 220 | 2–2.2 | 6–26.5 | 3–5.5 | [88,89,101] |
Peanut, Arachis hypogea | 30–200 | 2.5 | 23 | 22 | [84,88,102,103] |
Pigeon pea, Cajanus cajan | 40–250 | 2.5–3.5 | 14.2 | 10–40 | [86,88,104,105] |
Sunn hemp, Crotalaria juncea | 180–250 | 2–4.1 | 13–24 | 6–24 | [84,88,91,93] |
Stylosanthes guianensis | 115 | 1.5–3 | 13.5–14.5 | 4–11 | [86,88,100] |
Crop Species 1 | Nitrogen Leaf Tissue Content 2 (%) | Source |
---|---|---|
Calliandra calothyrsus | 2.8% | [92] |
Calliandra | 3.0% | [162] |
Cassia reticulata | 2.6% | [92] |
Cassia siamea | 2.3% | [92] |
Gliricidia sepium | 3.4% | [92] |
Inga edulis | 2.5% | [92] |
Leucaena leucocephala | 3–3.7% | [92,94] |
Sesbania sesban | 1.4% | [92] |
Senna siamea | 2.0% | [94] |
Tephrosia | 2.8% | [162] |
Cultural Practice | Reported Variables | Citations |
---|---|---|
Intercropping with legumes | N dynamics | [112,183] |
Intercropping | N cycle and flow analysis | [184,185,186] |
Manure and crops residues | Mineralization rates | [85] |
Legume Rotation & Intercrops | N dynamics | [115,171,187] |
Shifting cultivation | N and nutrient dynamics | [188,189,190] |
Integrated, crop-livestock systems | N contribution | [123,191] |
Agroforestry Systems | N dynamics | [94,159,192] |
Organic Mulches | N dynamics, soil fertility | [88,193] |
Soil and nutrient conservation | Erosion, runoff prevention | [178,192,194] |
Prospects for organic agriculture | Economics, sustainability, food security, adoption | [13,195,196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, H. Ecological Management of the Nitrogen Cycle in Organic Farms. Nitrogen 2023, 4, 58-84. https://doi.org/10.3390/nitrogen4010006
Valenzuela H. Ecological Management of the Nitrogen Cycle in Organic Farms. Nitrogen. 2023; 4(1):58-84. https://doi.org/10.3390/nitrogen4010006
Chicago/Turabian StyleValenzuela, Hector. 2023. "Ecological Management of the Nitrogen Cycle in Organic Farms" Nitrogen 4, no. 1: 58-84. https://doi.org/10.3390/nitrogen4010006
APA StyleValenzuela, H. (2023). Ecological Management of the Nitrogen Cycle in Organic Farms. Nitrogen, 4(1), 58-84. https://doi.org/10.3390/nitrogen4010006