Changes in Ammonium-to-Nitrate Ratio along Faidherbia albida Tree Age Gradients in Arenosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. The F. albida Tree Age Classes
2.3. Soil Sampling
2.4. Soil Analysis
2.5. Soil Nematode Extraction and Identification
2.6. Analyses of Microbial Biomass and Determination of Fungi/Bacterial Biomass Ratio
2.7. Statistical Analysis
3. Results
3.1. Effects of Different F. albida Tree Age Classes on NH4+/NO3−Ratio and the Other Studied Soil Bio-Physicochemical Properties
3.2. Effects of Different F. albida Tree Ages on Microbial Biomass Carbon and Abundance of Nematodes
3.3. Correlations between NH4+/NO3− Ratio and Soil Bio-Physicochemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, L.; Jiang, X.; Liu, G.; Yao, L.; Liu, W.; Pan, Y.; Zuo, Y. Environmental factors and microbial diversity and abundance jointly regulate soil nitrogen and carbon biogeochemical processes in Tibetan wetlands. Environ. Sci. Technol. 2020, 54, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bahadur, I.; Maurya, B.R.; Raghuwanshi, R.; Meena, V.S.; Singh, D.K.; Dixit, J. Does a plant growth-promoting rhizobacteria enhance agricultural sustainability. J. Pure Appl. Microbiol. 2015, 9, 715–724. [Google Scholar]
- Lal, B.; Nayak, V.; Kumar, A.; Kumar, P. A Perspective View of Nitrogen: Soil, Plants and Water. In Agriculture, Livestock Production and Aquaculture: Advances for Smallholder Farming Systems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1, pp. 113–135. [Google Scholar]
- Zhu, Y.; Qi, B.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Appropriate NH4+/NO3–ratio triggers plant growth and nutrient uptake of flowering Chinese cabbage by optimizing the pH value of nutrient solution. Front. Plant Sci. 2021, 12, 656144. [Google Scholar] [CrossRef]
- Follett, R.F.; Hatfield, J.L. Nitrogen in the environment: Sources, problems, and management. Sci. World J. 2001, 1, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Bibi, S.; Saifullah Naeem, A.; Dahlawi, S. Environmental impacts of nitrogen use in agriculture, nitrate leaching and mitigation strategies. In Soil Science: Agricultural and Environmental Prospectives; Springer: Berlin/Heidelberg, Germany, 2016; pp. 131–157. [Google Scholar]
- Hunova, I.; Kurfurst, P.; Stráník, V. Spatial pattern and temporal changes in the NH4+/NO3-ratio in atmospheric deposition in Czech forests. EGU GA Conf. Abstr. 2016, 18, EPSC 2016-8362. [Google Scholar]
- Guo, P.; Yang, L.; Kong, D.; Zhao, H. Differential effects of ammonium and nitrate addition on soil microbial biomass, enzymatic activities, and organic carbon in a temperate forest in North China. Plant Soil 2022, 481, 595. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.-K.; Sun, X.-C.; Mu, X.-H.; Chen, H.; Chen, F.-J.; Yuan, L.; Mi, G.-H. Interaction effect of nitrogen form and planting density on plant growth and nutrient uptake in maize seedlings. J. Integr. Agric. 2019, 18, 1120–1129. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, K.; Tan, P.; Liu, J.; Xie, J.; Yao, X.; Peng, F. Ammonia–nitrate mixture dominated by NH4+–N promoted growth, photosynthesis and nutrient accumulation in Pecan (Carya illinoinensis). Forests 2021, 12, 1808. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Sahrawat, K.L.; Nakahara, K.; Rao, I.M.; Ishitani, M.; Hash, C.T.; Lata, J.C. A paradigm shifts towards low-nitrifying production systems: The role of biological nitrification inhibition (BNI). Ann. Bot. 2013, 112, 297–316. [Google Scholar] [CrossRef]
- Konnerup, D.; Brix, H. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquat. Bot. 2010, 92, 142–148. [Google Scholar] [CrossRef]
- Hong, J.; Ma, X.; Zhang, X.; Wang, X. Nitrogen uptake pattern of herbaceous plants: Coping strategies in altered neighbor species. Biol. Fertil. Soils 2017, 53, 729–735. [Google Scholar] [CrossRef]
- Andersen, K.M.; Turner, B.L. Preferences or plasticity in nitrogen acquisition by understorey palms in a tropical montane forest. J. Ecol. 2013, 101, 819–825. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Siddiqi, M.Y.; Glass, A.D. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 1997, 385, 59–61. [Google Scholar] [CrossRef]
- Zhang, J.B.; Cai, Z.C.; Zhu, T.B.; Yang, W.Y.; Müller, C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci. Rep. 2013, 3, 2342. [Google Scholar] [CrossRef]
- Laffite, A.; Florio, A.; Andrianarisoa, K.S.; Creuze des Chatelliers, C.; Schloter-Hai, B.; Ndaw, S.M.; Le Roux, X. Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environ. Microbiol. 2020, 22, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Ribbons, R.R.; Levy-Booth, D.J.; Masse, J.; Grayston, S.J.; McDonald, M.A.; Vesterdal, L.; Prescott, C.E. Linking microbial communities, functional genes and nitrogen-cycling processes in forest floors under four tree species. Soil Biol. Biochem. 2016, 103, 181–191. [Google Scholar] [CrossRef]
- Boudsocq, S.; Niboyet, A.; Lata, J.C.; Raynaud, X.; Loeuille, N.; Mathieu, J.; Barot, S. Plant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning? Am. Nat. 2012, 180, 60–69. [Google Scholar] [CrossRef]
- He, X.; Chi, Q.; Meng, L.; Zhao, C.; He, M.; Dan, X.; Müller, C. Plants with nitrate preference can regulate nitrification to meet their nitrate demand. Soil Biol. Biochem. 2022, 165, 108516. [Google Scholar] [CrossRef]
- Boudsocq, S.; Lata, J.C.; Mathieu, J.; Abbadie, L.; Barot, S. Modelling approach to analyse the effects of nitrification inhibition on primary production. Funct. Ecol. 2009, 23, 220–230. [Google Scholar] [CrossRef]
- Smith, J.A.; Jaffe, P.R.; Chiou, C.T. Effect of ten quaternary ammonium cations on tetrachloromethane sorption to clay from water. Environ. Sci. Technol. 1990, 24, 1167–1172. [Google Scholar] [CrossRef]
- Gillman, G.; Noble, A. Environmentally manageable fertilizers: A new approach. Environ. Qual. Manag. 2005, 15, 59–70. [Google Scholar] [CrossRef]
- Rossiter-Rachor, N.A.; Setterfield, S.A.; Douglas, M.M.; Hutley, L.B.; Cook, G.D.; Schmidt, S. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecol. Appl. 2009, 19, 1546–1560. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, C.V.; Wren, I.F.; Herman, D.J.; Firestone, M.K. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 2005, 8, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Aanderud, Z.T.; Bledsoe, C.S. Preferences for 15N-ammonium, 15N-nitrate, and 15N-glycine differ among dominant exotic and subordinate native grasses from a California oak woodland. Environ. Exp. Bot. 2009, 65, 205–209. [Google Scholar] [CrossRef]
- Akpalu, S.E.; Anglaaere, L.; Damnyag, L.; Dawoe, E.K.; Abunyewa, A.A.; Akpalu, M.M. Floristic composition of agroforestry parklands in the semi-arid zone of Ghana: A special focus on Faidherbia albida (Delile) A. Chev. Trees For. People 2022, 9, 100310. [Google Scholar] [CrossRef]
- Teixeira, H.; Rodríguez-Echeverría, S. Identification of symbiotic nitrogen-fixing bacteria from three African leguminous trees in Gorongosa National Park. Syst. Appl. Microbiol. 2016, 39, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, D.; Diem, H.G.; Dianda, M.; Le Roux, C. Selection of Bradyrhizobium strains and provenances of Acacia mangium and Faidherbia albida: Relationship with their tolerance to acidity and aluminium. Plant Soil 1993, 149, 159–166. [Google Scholar] [CrossRef]
- Raj, A. Role of Trees and Woody Vegetation in Soil Fertility Enrichment and Food Security in Dryland Agroforestry as a Climate-Smart Agriculture Strategy. Int. J. Trop. Agric. 2017, 35, 1147–1161. [Google Scholar]
- Sileshi, G.W. The magnitude and spatial extent of influence of Faidherbia albida trees on soil properties and primary productivity in drylands. J. Arid Environ. 2016, 132, 1–14. [Google Scholar] [CrossRef]
- Tadesse, S.; Gebretsadik, W.; Muthuri, C.; Derero, A.; Hadgu, K.; Said, H.; Dilla, A. Crop productivity and tree growth in intercropped agroforestry systems in semi-arid and sub-humid regions of Ethiopia. Agrofor. Syst. 2021, 95, 487–498. [Google Scholar] [CrossRef]
- Ereso, T. The role of Faidherbia albida tree species in parkland agroforestry and its management in Ethiopia. J. Hortic. For. 2019, 11, 42–47. [Google Scholar]
- Hagazi, N.; Negussieb, A.; Hadgua, K.M.; Birhanec, E.; Hadush, Z. Restoration of Degraded Landscapes: Lessons from Northern Ethiopia. In Climate-Smart Agriculture: Enhancing Resilient Agricultural Systems, Landscapes, and Livelihoods in Ethiopia and Beyond; ICRAF: Nairobi, Kenya, 2019; pp. 61–74. [Google Scholar]
- Haileselassie, D. Impact Evaluation of Community-Based Soil and Water Conservation on Carbon Sequestration, Socioeconomic and Ecological Benefits: A Case Study from Abreha We Atsbeha, Tigray Region, Ethiopia. Ph.D. Thesis, Mekelle University, Mekele, Ethiopia, 2013. [Google Scholar]
- Hailu, A.; Yohannes, G.; Sue, E. Some Examples of Best Practices by Smallholder Farmers in Ethiopia; Best Practice Association (BPA): Adis Ababa, Ethiopia; Institute for Sustainable Development (ISD): Adis Ababa, Ethiopia, 2012; Volume 1, p. 177. [Google Scholar]
- Tadesse, A.; Gebrelibanos, G.; Gebrehiwot, M. Characterization and site suitability analysis of water harvesting technologies: The case of Abreha We Atsbeha watershed, Northern Ethiopia. J. Drylands 2016, 6, 531–545. [Google Scholar]
- Hao, X.; Ball, B.C.; Culley, J.L.B.; Carter, M.R.; Parkin, G.W. Soil density and porosity. Soil Sampl. Methods Anal. 2008, 2, 179–196. [Google Scholar]
- FAO. GLOSOLAN-SOP-02; Standard Operating Procedures for Soil Organic Carbon: Walkley and Black Method. GLOSOLAN’s Best Practice Manual; FAO: Rome, Italy, 2020.
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986; Volume 5, pp. 383–411. [Google Scholar]
- Cesarz, S.; Schulz, A.E.; Beugnon, R.; Eisenhauer, N. Testing soil nematode extraction efficiency using different variations of the Baermann-funnel method. Soil Org. 2019, 91, 61–72. [Google Scholar]
- Gießelmann, U.C.; Borchard, N.; Traunspurger, W.; Witte, K. Long-term effects of charcoal on nematodes and other soil meso-and microfaunal groups at historical kiln-sites–a pilot study. Eur. J. Soil Biol. 2019, 93, 103095. [Google Scholar] [CrossRef]
- Ananyeva, N.D.; Castaldi, S.; Stolnikova, E.V.; Kudeyarov, V.N.; Valentini, R. Fungi-to-bacteria ratio in soils of European Russia. Arch. Agron. Soil Sci. 2015, 61, 427–446. [Google Scholar] [CrossRef]
- Bailey, V.L.; Smith, J.L.; Bolton, H., Jr. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol. Biochem. 2002, 34, 997–1007. [Google Scholar] [CrossRef]
- Nair, P.R.; Kumar, B.M.; Nair, V.D.; Nair, P.R.; Kumar, B.M.; Nair, V.D. Biological Nitrogen Fixation and Nitrogen Fixing Trees—An Introduction to Agroforestry; Springer: Berlin/Heidelberg, Germany, 2021; pp. 413–443. [Google Scholar]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? CSIRO Publ.: Clayton, VIC, Australia, 2007. [Google Scholar]
- Castaldi, S.; Carfora, A.; Fiorentino, A.; Natale, A.; Messere, A.; Miglietta, F.; Cotrufo, M.F. Inhibition of net nitrification activity in a Mediterranean woodland: Possible role of chemicals produced by Arbutus unedo. Plant Soil 2016, 315, 273–283. [Google Scholar] [CrossRef]
- Smolander, A.; Kanerva, S.; Adamczyk, B.; Kitunen, V. Nitrogen transformations in boreal forest soils—Does composition of plant secondary compounds give any explanations? Plant Soil 2012, 350, 1–26. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Adv. Agron. 2019, 156, 159–217. [Google Scholar]
- Dudáš, M.; Pjevac, P.; Kotianová, M.; Gančarčíková, K.; Rozmoš, M.; Hršelová, H.; Jansa, J. Arbuscular mycorrhiza and nitrification: Disentangling processes and players by using synthetic nitrification inhibitors. Appl. Environ. Microbiol. 2022, 88, e01369-22. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, D.; Wang, C.; Chen, D.; Wang, Q. Reduced nitrification by biochar and/or nitrification inhibitor is closely linked with the abundance of comammox Nitrospira in a highly acidic sugarcane soil. Biol. Fertil. Soils 2020, 56, 1219–1228. [Google Scholar] [CrossRef]
- Sahrawat, K.L.; Keeney, D.R. Perspectives for research on development of nitrification inhibitors. Commun. Soil Sci. Plant Anal. 1985, 16, 517–524. [Google Scholar] [CrossRef]
- Sahrawat, K.L. Factors affecting nitrification in soils. Commun. Soil Sci. Plant Anal. 2008, 39, 1436–1446. [Google Scholar] [CrossRef]
- Bhambri, A.; Karn, S.K.; Kumar, A. 4 Regulation and measurement of nitrification in terrestrial systems. Anaerob. Ammonium Oxid. Ind. Wastewater Treat. 2023, 3, 55. [Google Scholar]
- Gebirehiwot, H.T.; Kedanu, A.A.; Adugna, M.T. The Role of Woody Plant Functional Traits for Sustainable Soil Management in the Agroforestry System of Ethiopia. Biodivers. Ecosyst. 2022, 137. [Google Scholar]
- Babur, E.; Dindaroglu, T. Seasonal changes of soil organic carbon and microbial biomass carbon in different forest ecosystems. Environ. Factors Affect. Hum. Health 2020, 1, 1–21. [Google Scholar]
- Angst, G.; Mueller, K.E.; Eissenstat, D.M.; Trumbore, S.; Freeman, K.H.; Hobbie, S.E.; Mueller, C.W. Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Glob. Chang. Biol. 2019, 25, 1529–1546. [Google Scholar] [CrossRef]
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Mueller, C.W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Herrick, J.E.; Wander, M.M. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity. In Soil Processes and the Carbon Cycle; CRC Press: Boca Raton, FL, USA, 2018; pp. 405–425. [Google Scholar]
- Schmäck, J.; Weihermüller, L.; Klotzsche, A.; von Hebel, C.; Pätzold, S.; Welp, G.; Vereecken, H. Large-scale detection and quantification of harmful soil compaction in a post-mining landscape using multi-configuration electromagnetic induction. Soil Use Manag. 2022, 38, 212–228. [Google Scholar] [CrossRef]
F. albida Tree Age Classes (Years) | Average of Five Trees | |
---|---|---|
Cirf (cm) | DBH (cm) | |
Out-of-canopy | N/A | N/A |
15–20 | 117.6 | 37.446 |
35–40 | 230 | 73.244 |
>60 | 438 | 139.484 |
Variable | F. albida Tree Age Classes (Years) | |||
---|---|---|---|---|
Out-of-Canopy | 15–20 | 35–40 | >60 | |
TN (%) | 0.2 ± 0.02 c | 0.3 ± 0.02 b | 0.36 ± 0.03 ab | 0.4 ± 0.02 a |
C/N (ratio) | 4 ± 0.7 c | 5.1 ± 0.9 b | 5.5 ± 0.6 ab | 7 ± 0.7 a |
P (mg/kg) | 15 ± 1.2 c | 17 ± 2 c | 26 ± 2 b | 30 ± 3 a |
Ca (mg/kg) | 320 ± 57 d | 550 ± 79 c | 680 ± 57 b | 960 ± 65 a |
Mg (mg/kg) | 95 ± 8 c | 115 ± 8 c | 162 ± 6 b | 197 ± 20 a |
K (mg/kg) | 39 ± 1.5 d | 145 ± 9 c | 200 ± 10 b | 481 ± 13 a |
Na (mg/kg) | 8.5 ± 2 d | 12 ± 2 c | 15.5 ± 2.5 b | 20.5 ± 3 a |
SOC (mg/kg) | 0.8 ± 0.06 d | 1.6 ± 0.08 c | 2 ± 0.19 b | 2.6 ± 0.5 a |
CEC (meq/100g) | 4.4 ± 0.4 d | 7.5 c ± 0.1 | 10 ± 0.5 b | 15 ± 1 a |
pH (scale) | 6.25 ± 1 a | 6.2 a ± 0.08 | 6.15 ± 0.01 a | 6 ± 0.07 b |
EC (dS/cm) | 0.3 ± 00 d | 1.5 c ± 0.01 | 1.7 ± 0.02 b | 2.3 ± 0.03 a |
Sand (%) | 87 ± 1 a | 85 a ± 0.8 | 72 ± 1 b | 70 ± 0.8 c |
Silt (%) | 7.2 b ± 1 b | 7.2 b ± 0.8 | 13 ± 0.8 a | 13 ± 0.7 a |
Clay (%) | 5.8 ± 1.3 c | 7.2 c ± 0.8 | 14 ± 1.8 b | 17 ± 0.3 a |
BD (g/cm3) | 1.6 ± 0.04 a | 1.49 a ± 0.02 | 1.43 ± 0.04 b | 1.39 ± 0.05 a |
MC (%) | 0.98 ± 0.15 c | 1.1 bc ± 0.3 | 1.3 ± 0.15 b | 1.5 ± 0.11 a |
Clay | Silt | AN | F/B | CEC | MBC | TN | SOC | Sand | BD | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
NH4+/NO3− | 0.91 ** | 0.91 ** | 0.90 ** | 0.90 ** | 0.88 ** | 0.86 ** | 0.83 ** | 0.83 ** | −0.94 ** | −0.81 ** | −0.74 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amare, S.; Haile, M.; Birhane, E. Changes in Ammonium-to-Nitrate Ratio along Faidherbia albida Tree Age Gradients in Arenosols. Nitrogen 2024, 5, 529-543. https://doi.org/10.3390/nitrogen5030035
Amare S, Haile M, Birhane E. Changes in Ammonium-to-Nitrate Ratio along Faidherbia albida Tree Age Gradients in Arenosols. Nitrogen. 2024; 5(3):529-543. https://doi.org/10.3390/nitrogen5030035
Chicago/Turabian StyleAmare, Solomon, Mitiku Haile, and Emiru Birhane. 2024. "Changes in Ammonium-to-Nitrate Ratio along Faidherbia albida Tree Age Gradients in Arenosols" Nitrogen 5, no. 3: 529-543. https://doi.org/10.3390/nitrogen5030035
APA StyleAmare, S., Haile, M., & Birhane, E. (2024). Changes in Ammonium-to-Nitrate Ratio along Faidherbia albida Tree Age Gradients in Arenosols. Nitrogen, 5(3), 529-543. https://doi.org/10.3390/nitrogen5030035