Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photocatalytic Material
2.2. Photocatalytic Setups
3. Results
3.1. Results of Photocatalytic Transformation of Nitric Oxide
3.2. CFD Modelling of Photocatalytic Annular Reactor
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vallero, D. Fundamentals of Air Pollution, 5th ed.; Academic Press: Cambridge, MA, USA, 2019; ISBN 9788578110796. [Google Scholar]
- Lasek, J.; Yu, Y.H.; Wu, J.C.S. Removal of NOx by Photocatalytic Processes. J. Photochem. Photobiol. C Photochem. Rev. 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A Review on Photocatalysis for Air Treatment: From Catalyst Development to Reactor Design. Chem. Eng. J. 2017, 310, 537–559. [Google Scholar] [CrossRef]
- Laufs, S.; Burgeth, G.; Duttlinger, W.; Kurtenbach, R.; Maban, M.; Thomas, C.; Wiesen, P.; Kleffmann, J. Conversion of Nitrogen Oxides on Commercial Photocatalytic Dispersion Paints. Atmos. Environ. 2010, 44, 2341–2349. [Google Scholar] [CrossRef]
- Dylla, H.; Hassan, M.M.; Thibodeaux, L.J. Kinetic Study of Photocatalytic Degradation of Nitrogen Monoxide with Titanium Dioxide Nanoparticles in Concrete Pavements. Transp. Res. Rec. 2014, 2441, 38–45. [Google Scholar] [CrossRef]
- Maggos, T.; Bartzis, J.G.; Leva, P.; Kotzias, D. Application of Photocatalytic Technology for NOx Removal. Appl. Phys. A Mater. Sci. Process. 2007, 89, 81–84. [Google Scholar] [CrossRef]
- Ohtani, B.; Prieto-Mahaney, O.O.; Li, D.; Abe, R. What Is Degussa (Evonic) P25? Crystalline Composition Analysis, Reconstruction from Isolated Pure Particles and Photocatalytic Activity Test. J. Photochem. Photobiol. A Chem. 2010, 216, 179–182. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Pirola, C.; Galli, F.; Cerrato, G.; Morandi, S.; Capucci, V. Pigmentary TiO2: A Challenge for Its Use as Photocatalyst in NOx Air Purification. Chem. Eng. J. 2015, 261, 76–82. [Google Scholar] [CrossRef]
- Zouzelka, R.; Rathousky, J. Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology. Appl. Catal. B Environ. 2017, 217, 466–476. [Google Scholar] [CrossRef]
- Wood, D.; Shaw, S.; Cawte, T.; Shanen, E.; Van Heyst, B. An Overview of Photocatalyst Immobilization Methods for Air Pollution Remediation. Chem. Eng. J. 2020, 391, 123490. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.; Ye, J.; Li Puma, G.; Dionysiou, D.D. (Eds.) Photocatalysis Fundamentals and Perspectives; The Royal Society of Chemistry: Cambridge, UK, 2016; ISBN 9781782620419. [Google Scholar]
- Li, S.; Chen, L.; Ma, Z.; Li, G.; Zhang, D. Research Progress on Photocatalytic/Photoelectrocatalytic Oxidation of Nitrogen Oxides. Trans. Tianjin Univ. 2021, 27, 295–312. [Google Scholar] [CrossRef]
- Cant, N.W.; Cole, J.R. Photocatalysis of the Reaction between Ammonia and Nitric Oxide on TiO2 Surfaces. J. Catal. 1992, 134, 317–330. [Google Scholar] [CrossRef]
- Bowering, N.; Walker, G.S.; Harrison, P.G. Photocatalytic Decomposition and Reduction Reactions of Nitric Oxide over Degussa P25. Appl. Catal. B Environ. 2006, 62, 208–216. [Google Scholar] [CrossRef]
- Malinowski, S.; Presečki, I.; Jajčinović, I.; Brnardić, I.; Mandić, V.; Grčić, I. Intensification of Dihydroxybenzenes Degradation over Immobilized TiO2 Based Photocatalysts under Simulated Solar Light. Appl. Sci. 2020, 10, 7571. [Google Scholar] [CrossRef]
- Grčić, I.; Marčec, J.; Radetić, L.; Radovan, A.-M.; Melnjak, I.; Jajčinović, I.; Brnardić, I. Ammonia and Methane Oxidation on TiO2 Supported on Glass Fiber Mesh under Artificial Solar Irradiation. Environ. Sci. Pollut. Res. 2021, 28, 18354–18367. [Google Scholar] [CrossRef] [PubMed]
- Grčić, I.; Papić, S.; Brnardić, I. Photocatalytic Activity of TiO2 Thin Films: Kinetic and Efficiency Study. Int. J. Chem. React. Eng. 2018, 16, 20160153. [Google Scholar] [CrossRef]
- NARVA BIO Vital®… Like Natural Sunglight. Available online: https://catalog.bailey.nl/webfiles/Catalogi/Narva/Narva_BIO_Vital_EN.pdf (accessed on 29 June 2024).
- Navier-Stokes Equations. Available online: https://www.comsol.com/multiphysics/navier-stokes-equations (accessed on 25 May 2024).
- Van Faassen, E.; Vanin, A.F. Nitric Oxide Radicals and Their Reactions. In Radical for Life: The Various Forms of Nitric Oxide; Elsevier B.V.: Amsterdam, The Netherlands, 2007; ISBN 978-0444522368. [Google Scholar]
- Ching, W.H.; Leung, M.; Leung, D.Y.C. Solar Photocatalytic Degradation of Gaseous Formaldehyde by Sol-Gel TiO2 Thin Film for Enhancement of Indoor Air Quality. Sol. Energy 2004, 77, 129–135. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Yu, J.C.; Leung, M.K.H. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking down Nitric Oxide. Environ. Sci. Technol. 2010, 44, 4276–4281. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Tao, Y.; Zou, H.; Xiao, S.; Li, G.; Zhang, D.; Li, H. Gas-Phase Photoelectrocatalytic Oxidation of NO via TiO2 Nanorod Array/FTO Photoanodes. Environ. Sci. Technol. 2020, 54, 5902–5912. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light. Environ. Sci. Technol. 2009, 43, 4143–4150. [Google Scholar] [CrossRef]
- Shie, J.L.; Lee, C.H.; Chiou, C.S.; Chang, C.T.; Chang, C.C.; Chang, C.Y. Photodegradation Kinetics of Formaldehyde Using Light Sources of UVA, UVC and UVLED in the Presence of Composed Silver Titanium Oxide Photocatalyst. J. Hazard. Mater. 2008, 155, 164–172. [Google Scholar] [CrossRef]
- Fermoso, J.; Sánchez, B.; Suarez, S. Air Purification Applications Using Photocatalysis. In Nanostructured Photocatalysts; Boukherroub, R., Ogale, S.B., Robertson, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–128. [Google Scholar]
- Grčić, I.; Radetić, L.; Miklec, K.; Presečki, I.; Leskovar, K.; Meaški, H.; Čizmić, M.; Brnardić, I. Solar Photocatalysis Application in UWWTP Outlets—Simulations Based on Predictive Models in Flat-Plate Reactors and Pollutant Degradation Studies with in Silico Toxicity Assessment. J. Hazard. Mater. 2024, 461, 132589. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, H.; Chen, R.; Chen, L.; Li, K.; Dong, F. Advances and Challenges of Photocatalytic Technology for Air Purification. Natl. Sci. Open 2022, 1, 20220025. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y. NOx Removal from Vehicle Emissions by Functionality Surface of Asphalt Road. J. Hazard. Mater. 2010, 174, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chu, J. NOx Photocatalytic Degradation on Active Concrete Road Surface—From Experiment to Real-Scale Application. J. Clean. Prod. 2011, 19, 1266–1272. [Google Scholar] [CrossRef]
- He, F.; Jeon, W.; Choi, W. Photocatalytic Air Purification Mimicking the Self-Cleaning Process of the Atmosphere. Nat. Commun. 2021, 12, 2528. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Luo, J.; Zhou, S.; Mao, X.; Shah, M.W.; Wang, F.; Chen, Z.; Wang, C. TiO2-Supported Ag Nanoclusters with Enhanced Visible Light Activity for the Photocatalytic Removal of NO. Appl. Catal. B Environ. 2018, 234, 206–212. [Google Scholar] [CrossRef]
- Jiang, Q.; Qi, T.; Yang, T.; Liu, Y. Ceramic Tiles for Photocatalytic Removal of NO in Indoor and Outdoor Air under Visible Light. Build. Environ. 2019, 158, 94–103. [Google Scholar] [CrossRef]
- Cassano, A.E.; Alfano, O.M. Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors. Catal. Today 2000, 58, 167–197. [Google Scholar] [CrossRef]
- Esteban Duran, J.; Mohseni, M.; Taghipour, F. Computational Modeling of UV Photocatalytic Reactors: Model Development, Evaluation, and Application. Water Qual. Res. J. Canada 2015, 50, 21–33. [Google Scholar] [CrossRef]
- Baetens, D.; Schoofs, K.; Somers, N.; Denys, S. A Brief Review on Multiphysics Modelling of the Various Physical and Chemical Phenomena Occurring in Active Photocatalytic Oxidation Reactors. Curr. Opin. Green Sustain. Chem. 2023, 40, 100764. [Google Scholar] [CrossRef]
- Roegiers, J.; van Walsem, J.; Denys, S. CFD- and Radiation Field Modeling of a Gas Phase Photocatalytic Multi-Tube Reactor. Chem. Eng. J. 2018, 338, 287–299. [Google Scholar] [CrossRef]
- Pareek, V.K.; Adesina, A.A. Light Intensity Distribution in a Photocatalytic Reactor Using Finite Volume. AIChE J. 2004, 50, 1273–1288. [Google Scholar] [CrossRef]
- Boyjoo, Y.; Ang, M.; Pareek, V. Some Aspects of Photocatalytic Reactor Modeling Using Computational Fluid Dynamics. Chem. Eng. Sci. 2013, 101, 764–784. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. Computer Simulations of Photocatalytic Reactors. Catalysts 2021, 11, 198. [Google Scholar] [CrossRef]
- Trujillo, F.J.; Safinski, T.; Adesina, A.A. CFD Analysis of the Radiation Distribution in a New Immobilized Catalyst Bubble Column Externally Illuminated Photoreactor. J. Sol. Energy Eng. Trans. ASME 2007, 129, 27–36. [Google Scholar] [CrossRef]
- Moreno-SanSegundo, J.; Casado, C.; Marugán, J. Enhanced Numerical Simulation of Photocatalytic Reactors with an Improved Solver for the Radiative Transfer Equation. Chem. Eng. J. 2020, 388, 124183. [Google Scholar] [CrossRef]
- Satuf, M.L.; Brandi, R.J.; Cassano, A.E.; Alfano, O.M. Scaling-up of Slurry Reactors for the Photocatalytic Degradation of 4-Chlorophenol. Catal. Today 2007, 129, 110–117. [Google Scholar] [CrossRef]
- Van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. Proof of Concept of an Upscaled Photocatalytic Multi-Tube Reactor: A Combined Modelling and Experimental Study. Chem. Eng. J. 2019, 378, 122038. [Google Scholar] [CrossRef]
- Van Walsem, J.; Verbruggen, S.W.; Modde, B.; Lenaerts, S.; Denys, S. CFD Investigation of a Multi-Tube Photocatalytic Reactor in Non-Steady-State Conditions. Chem. Eng. J. 2016, 304, 808–816. [Google Scholar] [CrossRef]
- Imoberdorf, G.E.; Irazoqui, H.A.; Alfano, O.M.; Cassano, A.E. Scaling-up from First Principles of a Photocatalytic Reactor for Air Pollution Remediation. Chem. Eng. Sci. 2007, 62, 793–804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaš, M.; Radetić, B.; Radetić, L.; Benjak, P.; Grčić, I. Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application. Nitrogen 2024, 5, 610-623. https://doi.org/10.3390/nitrogen5030041
Tomaš M, Radetić B, Radetić L, Benjak P, Grčić I. Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application. Nitrogen. 2024; 5(3):610-623. https://doi.org/10.3390/nitrogen5030041
Chicago/Turabian StyleTomaš, Marija, Benjamin Radetić, Lucija Radetić, Paula Benjak, and Ivana Grčić. 2024. "Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application" Nitrogen 5, no. 3: 610-623. https://doi.org/10.3390/nitrogen5030041
APA StyleTomaš, M., Radetić, B., Radetić, L., Benjak, P., & Grčić, I. (2024). Gas-Phase Photocatalytic Transformations of Nitric Oxide Using Titanium Dioxide on Glass Fiber Mesh for Real-Scale Application. Nitrogen, 5(3), 610-623. https://doi.org/10.3390/nitrogen5030041