Reduction of Nitrogen through Anaerobic Processes in Chinese Rice Paddy Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experiment Design
2.2. Soil Sampling and Analyses
2.3. 15N-Labelled Incubations
2.4. Calculation of Anaerobic N Transformations
2.5. Statistical Analysis
3. Results
3.1. Anaerobic N Transformations under Different Treatments
3.2. Influencing Factors of Anaerobic N Transformations
3.3. Determinants of Anaerobic N Transformations
4. Discussion
4.1. Effect of Irrigation on the Three Anaerobic N Conversion Pathways
4.2. Effect of Fertilization on the Three Anaerobic N Conversion Pathways
4.3. The Role of Water Content in Soil Nitrification and Denitrification
4.4. The Relationship of the Interactions of Denitrification, Feammox, and Anammox together on Anaerobic N Transformations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, S.; Zhang, J.; Liu, Y.; Yu, Z.; Liu, X. Net value of farmland ecosystem services in China. Land Degrad. Dev. 2018, 29, 2291–2298. [Google Scholar] [CrossRef]
- Swinton, S.M.; Lupi, F.; Robertson, G.P.; Hamilton, S.K. Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 2007, 64, 245–252. [Google Scholar] [CrossRef]
- Zamparas, M.; Kyriakopoulos, G.L.; Kapsalis, V.C.; Drosos, M.; Kalavrouziotis, I.K. Application of novel composite materials as sediment capping agents: Column experiments and modelling. Desalin. Water Treat 2019, 170, 111–118. [Google Scholar] [CrossRef]
- Long, A.; Heitman, J.; Tobias, C.; Philips, R.; Song, B. Co-occurring anammox, denitrification, and codenitrification in agricultural soils. Appl. Environ. Microbiol. 2013, 79, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, S.; Wang, Y.; Wang, C.; Risgaard-Petersen, N.; Jetten, M.S.; Yin, C. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 2011, 5, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Mulder, A.; Van de Graaf, A.A.; Robertson, L.; Kuenen, J. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 1995, 16, 177–183. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, X.; Zhou, Z.; Luo, L.; Lan, W.; Lin, J.-G.; Li, X.-Y.; Gu, J.-D. Simultaneous occurrence and analysis of both anammox and n-damo bacteria in five full-scale wastewater treatment plants. Int. Biodeterior. Biodegrad. 2021, 156, 105112. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y.; Ma, B.; Wang, S.; Zhu, G. Anaerobic ammonium oxidation in traditional municipal wastewater treatment plants with low-strength ammonium loading: Widespread but overlooked. Water Res. 2015, 84, 66–75. [Google Scholar] [CrossRef]
- Yang, X.-R.; Li, H.; Nie, S.-A.; Su, J.-Q.; Weng, B.-S.; Zhu, G.-B.; Yao, H.-Y.; Gilbert, J.A.; Zhu, Y.-G. Potential contribution of anammox to nitrogen loss from paddy soils in Southern China. Appl. Environ. Microbiol. 2015, 81, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.H.; Weber, K.A.; Silver, W.L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat. Geosci. 2012, 5, 538–541. [Google Scholar] [CrossRef]
- Clément, J.-C.; Shrestha, J.; Ehrenfeld, J.G.; Jaffé, P.R. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils. Soil Biol. Biochem. 2005, 37, 2323–2328. [Google Scholar] [CrossRef]
- Chaudhary, D.R.; Kim, J.; Kang, H. Influences of different halophyte vegetation on soil microbial community at temperate salt marsh. Microb. Ecol. 2018, 75, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sadras, V.O.; Xu, J.; Hu, C.; Yang, X.; Zhang, S. Genetic improvement of crop yield, grain protein and nitrogen use efficiency of wheat, rice and maize in China. Adv. Agron. 2021, 168, 203–252. [Google Scholar]
- Pandey, P.K.; Yu, J.; Omranian, N.; Alseekh, S.; Vaid, N.; Fernie, A.R.; Nikoloski, Z.; Laitinen, R.A. Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations. Plant Direct 2019, 3, e00186. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-Y.; Shi, S.-L.; Du, L.-J.; Xing, G. Pathways of N2O emission from rice paddy soil. Soil Biol. Biochem. 2000, 32, 437–440. [Google Scholar] [CrossRef]
- Lampayan, R.; Faronilo, J.; Tuong, T.; Espiritu, A.; De Dios, J.; Bayot, R.; Bueno, C.; Hosen, Y. Effects of seedbed management and delayed transplanting of rice seedlings on crop performance, grain yield, and water productivity. Field Crops Res. 2015, 183, 303–314. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Li, D.; Wang, H.; Chen, F.; Fu, X.; Fang, X.; Sun, X.; Yu, G. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol. Biochem. 2016, 103, 284–293. [Google Scholar] [CrossRef]
- Li, Y.; Tian, D.; Wang, J.; Niu, S.; Tian, J.; Ha, D.; Qu, Y.; Jing, G.; Kang, X.; Song, B. Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest. PeerJ 2019, 7, e7631. [Google Scholar] [CrossRef]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Briones, A.M.; Okabe, S.; Umemiya, Y.; Ramsing, N.-B.; Reichardt, W.; Okuyama, H. Ammonia-oxidizing bacteria on root biofilms and their possible contribution to N use efficiency of different rice cultivars. Plant Soil 2003, 250, 335–348. [Google Scholar] [CrossRef]
- Chen, G.; Kolb, L.; Cavigelli, M.A.; Weil, R.R.; Hooks, C.R. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production? Sci. Total Environ. 2018, 618, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Danso, E.O.; Abenney-Mickson, S.; Sabi, E.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.; Jensen, C.; Andersen, M. Effect of different fertilization and irrigation methods on nitrogen uptake, intercepted radiation and yield of okra (Abelmoschus esculentum L.) grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2015, 147, 34–42. [Google Scholar] [CrossRef]
- Thomas, G.W. Soil pH and soil acidity. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 475–490. [Google Scholar]
- Mueller, A. The Effect of Drying and Drying Temperature on Soil Analytical Test Values; Oklahoma State University: Stillwater, OK, USA, 2015. [Google Scholar]
- Liu, S.; Six, J.; Zhang, H.X.; Zhang, Z.; Peng, X.H. Integrated aggregate turnover and soil organic carbon sequestration using rare earth oxides and 13C isotope as dual tracers. Geoderma 2023, 430, 116313. [Google Scholar] [CrossRef]
- Watson, M.; Mullen, R. Understanding soil tests for plant-available phosphorus. Unpublished 2007, 3373, 1–4. [Google Scholar]
- Li, Y.; Chapman, S.J.; Nicol, G.W.; Yao, H. Nitrification and nitrifiers in acidic soils. Soil Biol. Biochem. 2018, 116, 290–301. [Google Scholar] [CrossRef]
- Liu, S.; Guo, Z.; Halder, M.; Zhang, H.; Six, J.; Peng, X. Impacts of residue quality and soil texture on soil aggregation pathways by using rare earth oxides as tracers. Geoderma 2021, 399, 115114. [Google Scholar] [CrossRef]
- Ding, B.; Li, Z.; Cai, M.; Lu, M.; Liu, W. Feammox is more important than anammox in anaerobic ammonium loss in farmland soils around Lake Taihu, China. Chemosphere 2022, 305, 135412. [Google Scholar] [CrossRef]
- Huang, J.; Chen, Y.; Pan, J.; Liu, W.; Yang, G.; Xiao, X.; Zheng, H.; Tang, W.; Tang, H.; Zhou, L. Carbon footprint of different agricultural systems in China estimated by different evaluation metrics. J. Clean. Prod. 2019, 225, 939–948. [Google Scholar] [CrossRef]
- Qin, R.; Noulas, C.; Herrera, J.M. Morphology and distribution of wheat and maize roots as affected by tillage systems and soil physical parameters in temperate climates: An overview. Arch. Agron. Soil Sci. 2018, 64, 747–762. [Google Scholar] [CrossRef]
- Zhu, Z.; Ge, T.; Hu, Y.; Zhou, P.; Wang, T.; Shibistova, O.; Guggenberger, G.; Su, Y.; Wu, J. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: Turnover and microbial utilization. Plant Soil 2017, 416, 243–257. [Google Scholar] [CrossRef]
- Zhu, Z.; Ge, T.; Liu, S.; Hu, Y.; Ye, R.; Xiao, M.; Tong, C.; Kuzyakov, Y.; Wu, J. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 2018, 116, 369–377. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biol. Biochem. 2015, 82, 99–106. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, S.; Assemien, F.; Qin, M.; Ma, B.; Xie, Z.; Liu, Y.; Feng, H.; Du, G.; Ma, X. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biol. Biochem. 2016, 101, 195–206. [Google Scholar] [CrossRef]
- Johnson, D.; Geisinger, D.; Walker, R.; Newman, J.; Vose, J.; Elliot, K.; Ball, T. Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen-fertilized ponderosa pine. Plant Soil 1994, 165, 129–138. [Google Scholar] [CrossRef]
- Kartal, B.; Kuypers, M.M.; Lavik, G.; Schalk, J.; Op den Camp, H.J.; Jetten, M.S.; Strous, M. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ. Microbiol. 2007, 9, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-J.; An, X.-L.; Li, S.; Zhang, G.-L.; Zhu, Y.-G. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence. Environ. Sci. Technol. 2014, 48, 10641–10647. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Li, Z.; Qin, Y. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron (III) reduction in a riparian zone. Environ. Pollut. 2017, 231, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Humbert, S.; Tarnawski, S.; Fromin, N.; Mallet, M.-P.; Aragno, M.; Zopfi, J. Molecular detection of anammox bacteria in terrestrial ecosystems: Distribution and diversity. ISME J. 2010, 4, 450–454. [Google Scholar] [CrossRef]
- Khramenkov, S.; Kozlov, M.; Kevbrina, M.; Dorofeev, A.; Kazakova, E.; Grachev, V.; Kuznetsov, B.; Polyakov, D.Y.; Nikolaev, Y.A. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology 2013, 82, 628–636. [Google Scholar] [CrossRef]
Mean annual temperature | 16.2 °C |
Mean annual precipitation | 1564 mm |
pH | 5.1 |
Organic matter content | 41.9 g kg−1 |
Electrical conductivity | 61.7 μs cm−1 |
Alkali hydrolysable N | 277 mg kg−1 |
Available phosphor | 90.2 mg kg−1 |
Available potassium | 140 mg kg−1 |
Rf | Δ30N2 = 30N2(2) − 30N2(1) |
Rd | Δ30N2 = 30N2(3) − 30N2(1) |
Ra | Δ29N2 = 29N2(3) − 29N2(1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aioub, A.A.A.; Jin, S.; Xu, J.; Zhang, Q. Reduction of Nitrogen through Anaerobic Processes in Chinese Rice Paddy Soils. Nitrogen 2024, 5, 655-666. https://doi.org/10.3390/nitrogen5030043
Aioub AAA, Jin S, Xu J, Zhang Q. Reduction of Nitrogen through Anaerobic Processes in Chinese Rice Paddy Soils. Nitrogen. 2024; 5(3):655-666. https://doi.org/10.3390/nitrogen5030043
Chicago/Turabian StyleAioub, Ahmed A. A., Shuquan Jin, Jiezhang Xu, and Qichun Zhang. 2024. "Reduction of Nitrogen through Anaerobic Processes in Chinese Rice Paddy Soils" Nitrogen 5, no. 3: 655-666. https://doi.org/10.3390/nitrogen5030043
APA StyleAioub, A. A. A., Jin, S., Xu, J., & Zhang, Q. (2024). Reduction of Nitrogen through Anaerobic Processes in Chinese Rice Paddy Soils. Nitrogen, 5(3), 655-666. https://doi.org/10.3390/nitrogen5030043