Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Experimental Setup
2.2. Soil Sampling and Methods
2.3. Indices
2.4. Statistical Analysis
3. Results
3.1. Soil Measurements
3.2. Fertilization-Based Indicators
3.3. Plant-Based Indices
3.4. Soil-Based Indices
3.5. Ecology-Based Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zandi, P.; Basu, S.K.; Cetzal-Ix, W.; Kordrostami, M.; Chalaras, S.K.; Khatibai, L.B. Fenugreek (Trigonella foenum-graecum L.): An important medicinal and aromatic crop. In Active Ingredients from Aromatic and Medicinal Plants; InTechOpen: London, UK, 2017; pp. 207–224. [Google Scholar] [CrossRef]
- Basu, S.K.; Zandi, P.; Cetzal-Ix, W. Fenugreek (Trigonella foenum-graecum L.): Distribution, genetic diversity, and potential to serve as an industrial crop for the global pharmaceutical, nutraceutical, and functional food industries. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2019; pp. 471–497. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Magadlela, A.; Hong, S.; Cheng, Q. Fenugreek cultivation in the middle east and other parts of the world with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. In Fenugreek: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 13–30. [Google Scholar] [CrossRef]
- Rajagopala, S. Fenugreek: Traditional and Modern Medicinal Uses; Ghosh, D., Thakurdesai, P., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Singh, A.; Rai, J.; Mahajan, D.S. Comparative evaluation of glipizide and fenugreek (Trigonella foenum-graecum) seeds as monotherapy and combination therapy on glycaemic control and lipid profile in patients with type 2 diabetes mellitus. Int. J. Basic. Clin. Pharmacol. 2016, 5, 942–950. [Google Scholar] [CrossRef]
- Basu, T.K.; Srichamroen, A. Health Benefits of Fenugreek (Trigonella foenum-graecum leguminosse). In Bioactive Foods in Promoting Health; Academic Press: Cambridge, MA, USA, 2010; pp. 425–435. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, R.; Brar, J.K. Pharmacological and Therapeutic Properties of Fenugreek (Trigonella foenum-graecum) Seed: A Review. J. Phytopharm. 2024, 13, 97–104. [Google Scholar] [CrossRef]
- Verma, P.P.; Nayyer, M.A.; Singh, S.; Kumar, D.; Siddiqui, S. Genetic diversity and distribution of fenugreek (Trigonella foenum-graecum Linn): A review. Pharma Innov. Int. J. 2023, 12, 1342–1352. [Google Scholar]
- Alemu, A.W.; Doepel, L. Fenugreek (Trigonella foenum-graecum L.) as an alternative forage for dairy cows. Animal 2011, 5, 1370–1381. [Google Scholar] [CrossRef]
- Acharya, S.N.; Thomas, J.E.; Basu, S.K. Fenugreek, an alternative crop for semiarid regions of North America. Crop Sci. 2008, 48, 841–853. [Google Scholar] [CrossRef]
- Niknam, R.; Kiani, H.; Mousavi, Z.E.; Mousavi, M. Extraction, detection, and characterization of various chemical components of Trigonella foenum-graecum L.(fenugreek) known as a valuable seed in agriculture. In Fenugreek: Biology and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 189–217. [Google Scholar] [CrossRef]
- Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Edberg, K. Farming without Animals? Ph.D. Thesis, Lund University, Lund, Swedish, 2023. [Google Scholar]
- Anders, A.; Eisenbach, J. Biocyclic-vegan agriculture. Grow. Green Int. 2017, 39, 32–34. [Google Scholar]
- Jürkenbeck, K.; Schleicher, L.; Meyerding, S.G. Marketing potential for biocyclic-vegan-products? A qualitative, explorative study with experts and consumers. Ger. J. Agric. Econ. 2019, 68, 289–298. [Google Scholar] [CrossRef]
- Köninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J. Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Espinosa-Marrón, A.; Adams, K.; Sinno, L.; Cantu-Aldana, A.; Tamez, M.; Marrero, A.; Bhupathiraju, S.N.; Mattei, J. Environmental impact of animal-based food production and the feasibility of a shift toward sustainable plant-based diets in the United States. Front. Sustain. 2022, 3, 841106. [Google Scholar] [CrossRef]
- Seymour, M. Expanding recognition and inclusion of animal-free organic agriculture in the sustainable agriculture movement. Front. Sustain. Food Syst. 2023, 7, 1293261. [Google Scholar] [CrossRef]
- Seymour, M.; Utter, A. Veganic farming in the United States: Farmer perceptions, motivations, and experiences. Agric. Hum. Values 2021, 38, 1139–1159. [Google Scholar] [CrossRef] [PubMed]
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosystems Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Singh, P.; Raj, A.; Yadav, B. Impacts of agriculture-based contaminants on groundwater quality. In Sustainability of Water Resources; Springer: Cham, Switzerland, 2022; pp. 249–261. [Google Scholar] [CrossRef]
- European Commission Staff Working Document. Report on the Implementation of the Water Framework Directive River Basin Management Plans, Member State: GREECE, Brussels, 9.3.2015, SWD. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2015:054:FIN (accessed on 11 June 2020).
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Power, J.F.; Doran, J.W. Nitrogen use in organic farming. In Nitrogen in Crop Production; American Society of Agronomy: Madison, WI, USA, 1984; pp. 585–598. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.A.H.C.; Van Bruggen, A.H.C.; Shennan, C. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Bilalis, D.J.; Karamanos, A.J. Organic maize growth and mycorrhizal root colonization response to tillage and organic fertilization. J. Sustain. Agric. 2010, 34, 836–849. [Google Scholar] [CrossRef]
- Kakabouki, I.; Efthimiadou, A.; Folina, A.; Zisi, C.; Karydogianni, S. Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Commun. Soil. Sci. Plant Anal. 2020, 51, 2858–2872. [Google Scholar] [CrossRef]
- Kundu, D.K.; Ladha, J.K. Enhancing soil nitrogen use and biological nitrogen fixation in wetland rice. Exp. Agric. 1995, 31, 261–278. [Google Scholar] [CrossRef]
- Shoji, S.; Delgado, J.; Mosier, A.; Miura, Y. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. Commun. Soil Sci. Plant Anal. 2001, 32, 1051–1070. [Google Scholar] [CrossRef]
- Ferguson, R.B.; Penas, E.J.; Shapiro, C.A.; Hergert, G.W. Fertilizer Nitrogen Best Management Practices; University of Nebraska-Lincoln Cooperative Extension Publication G94-1178-A; University of Nebraska-Lincoln: Lincoln, NE, USA, 1994. [Google Scholar]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Cormier, F.; Foulkes, J.; Hirel, B.; Gouache, D.; Moënne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen-use efficiency: A review for wheat (T. aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar] [CrossRef]
- Martinez-Feria, R.A.; Castellano, M.J.; Dietzel, R.N.; Helmers, M.J.; Liebman, M.; Huber, I.; Archontoulis, S.V. Linking crop-and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 2018, 256, 131–143. [Google Scholar] [CrossRef]
- Good, A.G.; Shrawat, A.K.; Muench, D.G. Sources and fates of nitrogen in plants and the environment. Trends Plant Sci. 2004, 12, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Dobermann, A. Nutrient use efficiency–measurement and management. In Fertilizer Best Management Practices: General Principles, Strategy for Their Adoption and Voluntary Initiatives Versus Regulations; International Fertilizer Industry Association: Paris, France, 2007. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Li, Y.C. The role of nutrient efficient plants in improving crop yields in the twenty first century. J. Plant Nutr. 2008, 31, 1121–1157. [Google Scholar] [CrossRef]
- Ernst, O.R.; Kemanian, A.R.; Mazzilli, S.; Siri-Prieto, G.; Dogliotti, S. The dos and don’ts of no-till continuous cropping: Evidence from wheat yield and nitrogen use efficiency. Field Crops Res. 2020, 257, 107934. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Paris, France; International Plant Nutrition Institute (IPNI): Paris, France; International Potash Institute (IPI): Paris, France, 2015; Volume 270, pp. 1–30. [Google Scholar]
- Folina, A.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.S.; Roussis, I.; Darawsheh, M.K.; Papastylianou, P.; et al. Evaluation of various nitrogen indices in N-fertilizers with inhibitors in field crops: A review. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Erisman, J.W.; Leach, A.; Bleeker, A.; Atwell, B.; Cattaneo, L.; Galloway, J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production–consumption chain. Sustainability 2018, 10, 925. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- ISO 11261:1995; Soil Quality: Determination of Total Nitrogen: Modified Kjeldahl Method. International Organization for Standardization: Geneve, Switzerland, 1995.
- ISO 11260; Soil Quality: Determination of Cation Exchange Capacity and Base Saturation Method Using Barium Chloride Solution. International Organization for Standardization: Geneva, Switzerland, 1994.
- ISO 11265:1996; Soil Quality—Determination of the Specific Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1996.
- IPNI. Nutrient Performance Indicators: The Importance of Farm Scale Assessments, Linked to Soil Fertility, Productivity, Environmental Impact and the Adoption of Grower Best Management Practices. 2014. Available online: http://anz.ipni.net/ipniweb/region/anz.nsf/0/9312A2172A0B917CCA257E8E007219B4/$FILE/Issue%20Review%20Perf%20Ind%20081114.pdf (accessed on 11 June 2020).
- Novoa, R.; Loomis, R.S. Nitrogen and plant production. Plant Soil 1981, 58, 177–204. [Google Scholar] [CrossRef]
- Berendse, F.; Aerts, R. Nitrogen-use-efficiency: A biologically meaningful definition? Funct. Ecol. 1987, 1, 293–296. [Google Scholar]
- Lambers, H.; Oliveira, R.S.; Lambers, H.; Oliveira, R.S. Mineral nutrition. In Plant Physiological Ecology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 301–384. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Kozłowski, M.; Wąsowicz, J.; Pęczek, E.; Białowiec, A. Nitrogen Removal from Landfill Leachate Using Biochar Derived from Wheat Straw. Materials 2024, 17, 928. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Environmental soil chemistry: An overview. Environ. Soil Chem. 2003, 2, 1–42. [Google Scholar]
- Singh, M.S. Effect of Rhizobium, FYM and chemical fertilizers on legume crops and nutrient status of soil—A review. Agric. Rev. 2005, 26, 309–312. [Google Scholar]
- Jani, A.D.; Grossman, J.M.; Smyth, T.J.; Hu, S. Influence of soil inorganic nitrogen and root diameter size on legume cover crop root decomposition and nitrogen release. Plant Soil 2015, 393, 57–68. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil. Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Galantini, J.; Rosell, R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils. Soil. Tillage Res. 2006, 87, 72–79. [Google Scholar] [CrossRef]
- Plaza, C.; Giannetta, B.; Fernández, J.M.; López-de-Sá, E.G.; Polo, A.; Gascó, G.; Méndez, A.; Zaccone, C. Response of different soil organic matter pools to biochar and organic fertilizers. Agric. Ecosyst. Environ. 2016, 225, 150–159. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Balík, J.; Kulhánek, M.; Černý, J.; Sedlář, O.; Suran, P.; Asrade, D.A. The influence of organic and mineral fertilizers on the quality of soil organic matter and glomalin content. Agronomy 2022, 12, 1375. [Google Scholar] [CrossRef]
- Chen, Y.; Aviad, T. Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Sciences: Selected Readings; American Society of Agronomy: Madison, WI, USA, 1990; pp. 161–186. [Google Scholar] [CrossRef]
- Oleńska, E.; Małek, W.; Wójcik, M.; Swiecicka, I.; Thijs, S.; Vangronsveld, J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020, 743, 140682. [Google Scholar] [CrossRef] [PubMed]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Yadav, R.L. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheat systems of India. Field Crops Res. 2003, 81, 39–51. [Google Scholar] [CrossRef]
- Shahzad, A.N.; Qureshi, M.K.; Wakeel, A.; Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2019, 2, 1106–1114. [Google Scholar] [CrossRef]
- Kareem, A.A.; Ramasamy, C. Expanding Frontiers of Agriculture: Contemporary Issues; Kalyani Publishers: New Delhi, India, 2000. [Google Scholar]
- Salinas-Roco, S.; Morales-González, A.; Espinoza, S.; Pérez-Díaz, R.; Carrasco, B.; Del Pozo, A.; Cabeza, R.A. N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density. Plants 2024, 13, 991. [Google Scholar] [CrossRef]
- Pang, X.P.; Letey, J. Organic farming challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef]
- Gaskell, M.; Smith, R. Nitrogen sources for organic vegetable crops. HortTechnology 2007, 17, 431–441. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Palmero, F.; Fernandez, J.A.; Garcia, F.O.; Haro, R.J.; Prasad, P.V.; Salvagiotti, F.; Ciampitti, I.A. A quantitative review into the contributions of biological nitrogen fixation to agricultural systems by grain legumes. Eur. J. Agron. 2022, 136, 126514. [Google Scholar] [CrossRef]
- Maaz, T.M.; Sapkota, T.B.; Eagle, A.J.; Kantar, M.B.; Bruulsema, T.W.; Majumdar, K. Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture. Glob. Chang. Biol. 2021, 27, 2343–2360. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Ma, B.L.; Herath, A.W. Timing and rates of nitrogen fertiliser application on seed yield, quality and nitrogen-use efficiency of canola. Crop Pasture Sci. 2016, 67, 167–180. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Li, Y.; Liu, S.; Ji, J.; Tong, Y. Effects of mixed controlled release nitrogen fertilizer with rice straw biochar on rice yield and nitrogen balance in northeast China. Sci. Rep. 2020, 10, 9452. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Bilalis, D.; Karkanis, A.; Froud-Williams, B. Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Aust. J. Crop Sci. 2010, 4, 722–729. [Google Scholar]
- Kakabouki, I.; Folina, A.; Charikleia, Z.I.S.I.; Karydogianni, S. Fertilization expression via nitrogen indices in soybean crop under two system tillage. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 799–813. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Haynes, R.J.R.J. Mineral Nitrogen in the Plant-Soil System; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Talaat, N.B.; Ghoniem, A.E.; Abdelhamid, M.T.; Shawky, B.T. Effective microorganisms improve growth performance, alter nutrients acquisition and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress. Plant Growth Regul. 2015, 75, 281–295. [Google Scholar] [CrossRef]
- Singh, R.; Babu, S.; Avasthe, R.K.; Das, A.; Praharaj, C.S.; Layek, J.; Kumar, A.; Rathore, S.S.; Kancheti, M.; Kumar, S.; et al. Organic farming in North–East India: Status and strategies. Indian J. Agron. 2021, 66, 163–179. [Google Scholar]
- Fatemi, R.; Hoseini, S.M.B.; Moghadam, H.; Motesharezadeh, B.; Ahmadabadi, Z. How biofertilizers and intercropping pattern affect yield and nitrogen efficiency indices of maize? Arab. J. Geosci. 2023, 16, 378. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, S.R.K.; Kumar, N.; Singh, A.K. Maximization of nutrient use efficiency and yield through application of biofertilizers in field pea (Pisum sativum L.). Legume Res. 2023, 46, 1475–1482. [Google Scholar] [CrossRef]
- Ooro, P.A.; Birech, R.J.; Malinga, J.N.; Thuranira, E. Effect of legumes on nitrogen use efficiency of wheat in a short term crop rotation in njoro sub-county. J. Exp. Agric. Int. 2021, 43, 1–15. [Google Scholar] [CrossRef]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Tigka, E.L.; Karydogianni, S.; Zisi, C.; Folina, A.; et al. Reintroducing flax (Linum usitatissimum L.) to the Mediterranean basin: The importance of nitrogen fertilization. Plants 2021, 10, 1758. [Google Scholar] [CrossRef]
- Lemaire, G.; Ciampitti, I. Crop mass and N status as prerequisite covariables for unraveling nitrogen use efficiency across genotype-by-environment-by-management scenarios: A review. Plants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Escuer-Gatius, J.; Lõhmus, K.; Shanskiy, M.; Kauer, K.; Vahter, H.; Mander, Ü.; Astover, A.; Soosaar, K. Critical points for closing the carbon and nitrogen budgets in a winter rapeseed field. Nutr. Cycl. Agroecosystems 2022, 122, 289–311. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ngullie, E. Integrated nutrient management: Theory and practice. Dyn. Soil Dyn. Plant 2009, 3, 1–30. [Google Scholar]
- Sivojiene, D.; Kacergius, A.; Baksiene, E.; Maseviciene, A.; Zickiene, L. The influence of organic fertilizers on the abundance of soil microorganism communities, agrochemical indicators, and yield in East Lithuanian light soils. Plants 2021, 10, 2648. [Google Scholar] [CrossRef] [PubMed]
- Tarfeen, N.; Hassan, S.; Manzoor, A.; Sultan, Z. Integrated nutrient management strategies for improving crop yield. In Sustainable Plant Nutrition; Academic Press: Cambridge, MA, USA, 2023; pp. 283–297. [Google Scholar] [CrossRef]
- Akter, Z.; Lupwayi, N.Z.; Balasubramanian, P.M. Nitrogen use efficiency of irrigated dry bean (Phaseolus vulgaris L.) genotypes in southern Alberta. Can. J. Plant Sci. 2017, 97, 610–619. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Míguez-Montero, Á.; Valentine, A. Phosphorus and nitrogen modulate plant performance in shrubby legumes from the Iberian Peninsula. Plants 2019, 8, 334. [Google Scholar] [CrossRef] [PubMed]
- Bastida, F.; Kandeler, E.; Moreno, J.L.; Ros, M.; García, C.; Hernández, T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Pinchuk, V.; Symochko, L.; Palapa, N.; Ustymenko, O.; Kichigina, O.; Demyanyuk, O. Agroecological soil status in agroecosystems with monoculture. Int. J. Ecosyst. Ecol. Sci. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Biswas, T.; Kole, S.C. Soil organic matter and microbial role in plant productivity and soil fertility. In Advances in Soil Microbiology: Recent Trends and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 219–238. [Google Scholar]
- Yang, X.; Zhang, C.; Ma, X.; Liu, Q.; An, J.; Xu, S.; Xie, X.; Geng, J. Combining organic fertilizer with controlled-release urea to reduce nitrogen leaching and promote wheat yields. Front. Plant Sci. 2021, 12, 802137. [Google Scholar] [CrossRef]
Index Name | Short Name | Formula | Reference | No. |
---|---|---|---|---|
Fertilization-based indicators | ||||
Partial-factor Seed Productivity | PFPseed | [38] | (1) | |
Partial-factor Biomass Productivity | PFPbiomass | [38] | (2) | |
N Balance Intensity | NBI | [48] | (3) | |
NUEcrop | [35] | (4) | ||
Partial N Balance | PNB | [38] | (5) | |
Agr. Efficiency | AE | [38] | (6) | |
Fertilizer-N = Recovery Efficiency | REfertN | [38] | (7) | |
Plant-based indices | ||||
Physiol. Efficiency | PE | [38] | (8) | |
N Utiliz. Efficiency | NUtE | [31] | (9) | |
Internal Efficiency | IE | [38] | (10) | |
N Harvest Index | NHI | [31] | (11) | |
NUEsoil | [31] | (12) | ||
Soil-based indices | ||||
N Uptake Efficiency | NUpE | [31] | (13) | |
NUEyield | [49] | (14) | ||
NUEbalance | [35] | (15) | ||
Ecology-based indices | ||||
Nitrogen Productivity | NP | [50] | (16) | |
NUEecology | [51] | (17) |
STN (mg g−1) | CEC (cmol kg−1) | SOM (%) | ||
---|---|---|---|---|
CPI | ||||
Fertilization | BHS | 2.42 a | 19.83 a | 3.77 a |
COMP | 1.82 b | 16.83 c | 3.40 a | |
C | 0.99 c | 15.33 d | 2.37 b | |
FYM | 2.14 ab | 18.17 b | 3.50 a | |
NPK | 1.96 b | 17.50 bc | 2.43 b | |
Salinity | CS | 1.96 a | 17.80 a | 3.19 a |
HS | 1.77 a | 17.27 a | 3.14 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 40.45 *** | 33.07 *** | 26.81 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP II | ||||
Fertilization | BHS | 2.45 a | 20.00 a | 3.82 a |
COMP | 1.74 c | 18.67 b | 3.42 b | |
C | 1.14 d | 15.67 d | 2.32 c | |
FYM | 2.25 b | 18.33 b | 3.52 b | |
NPK | 2.08 b | 17.33 c | 2.40 c | |
Salinity | CS | 2.03 a | 18.27 a | 3.23 a |
HS | 1.83 a | 17.73 a | 2.95 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 131.71 *** | 53.71 *** | 161.31 *** |
Fertilization x Salinity | 4 | 6.35 ** | ns | ns |
CP III | ||||
Fertilization | BHS | 2.55 a | 19.83 a | 3.97 a |
COMP | 2.11 c | 18.33 b | 3.54 b | |
C | 1.27 d | 15.67 d | 2.19 c | |
FYM | 2.35 ab | 18.33 b | 3.64 b | |
NPK | 2.17 bc | 17.33 c | 2.40 c | |
Salinity | CS | 2.23 a | 18.27 a | 3.28 a |
HS | 1.96 a | 17.53 a | 3.01 a | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | ns |
Fertilization | 4 | 96.51 *** | 51.39 *** | 195.46 *** |
Fertilization x Salinity | 4 | 3.10 * | ns | ns |
Error | 16 | |||
Total | 29 |
PFPseed | PFPbiomass | NBI | NUEcrop | PNB | AE | REfertN | ||
---|---|---|---|---|---|---|---|---|
CPI | ||||||||
Fertilization | BHS | 12.44 c | 42.26 a | −32.12 ab | 0.71 ab | 0.28 a | 4.03 c | 0.14 a |
COMP | 12.76 bc | 37.24 b | −39.52 b | 0.64 b | 0.22 b | 4.35 bc | 0.08 b | |
C | ||||||||
FYM | 14.95 a | 42.62 a | −19.04 a | 0.83 a | 0.26 a | 6.54 a | 0.13 a | |
NPK | 14.47 ab | 42.75 a | −25.48 a | 0.77 a | 0.26 a | 6.05 ab | 0.12 a | |
Salinity | CS | 14.48 a | 42.07 a | −21.227 a | 0.81 a | 0.26 a | 5.80 a | 0.10 b |
HS | 12.83 a | 40.37 a | −36.86 b | 0.66 b | 0.24 a | 4.70 a | 0.14 a | |
ANOVA | Df | F | F | F | F | F | F | F |
Salinity | 1 | ns | ns | 13.28 *** | 13.28 *** | ns | ns | 3.49 ** |
Fertilization | 4 | 6.71 ** | 26.74 *** | 49.00 ** | 49.20 ** | ns | 6.71 ** | 23.83 ** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
CP II | ||||||||
Fertilization | BHS | 15.65 a | 41.53 a | 11.62 ab | 0.90 a | 0.28 a | 5.03 a | 0.15 a |
COMP | 15.91 a | 34.43 c | −24.862 b | 0.82 a | 0.20 c | 5.30 a | 0.07 d | |
C | ||||||||
FYM | 18.30 a | 40.85 ab | 2.36 a | 1.03 a | 0.26 ab | 7.69 a | 0.14 b | |
NPK | 16.97 a | 39.49 b | −9.219 ab | 0.92 a | 0.24 b | 6.35 a | 0.11 c | |
Salinity | CS | 18.91 a | 40.39 a | −4.983 a | 1.05 a | 0.26 a | 7.64 a | 0.13 a |
HS | 14.51 b | 37.76 a | −5.062 a | 0.79 b | 0.23 a | 4.54 b | 0.09 a | |
ANOVA | Df | |||||||
Salinity | 1 | 15.62 ** | ns | ns | 16.91 *** | ns | ns | ns |
Fertilization | 4 | ns | 97.48 *** | ns | ns | 3.54 * | ns | 50.72 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
CP III | ||||||||
Fertilization | BHS | 19.11 a | 42.28 a | 11.15 a | 1.02 a | 0.29 a | 7.28 a | 0.16 a |
COMP | 15.05 c | 33.36 d | −10.65 c | 0.77 a | 0.19 c | 3.23 c | 0.07 d | |
C | ||||||||
FYM | 18.13 ab | 39.98 b | 8.22 ab | 0.92 a | 0.26 ab | 6.31 ab | 0.13 b | |
NPK | 16.48 bc | 37.92 c | −10.46 b | 1.11 a | 0.23 b | 4.67 bc | 0.09 c | |
Salinity | CS | 17.03 a | 38.96 a | −4.87 a | 0.95 a | 0.24 a | 5.62 a | 0.13 a |
HS | 17.36 a | 37.82 b | −5.60 a | 0.95 a | 0.21 a | 5.12 a | 0.09 b | |
ANOVA | Df | |||||||
Salinity | 1 | ns | 26.85 * | ns | ns | ns | ns | 7.87 * |
Fertilization | 4 | 15.43 *** | 67.94 *** | 77 *** | ns | 72.23 *** | 15.43 *** | 50.72 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns | ns | ns |
Error | 16 | |||||||
Total | 29 |
PE | NUtE | IE | NHI | NUEsoil | ||
---|---|---|---|---|---|---|
CPI | ||||||
Fertilization | BHS | 28.77 b | 45.67 a | 2.59 ab | 259.23 ab | 10.08 ab |
COMP | 59.15 a | 60.44 a | 3.02 ab | 302.38 ab | 8.93 b | |
C | 64.17 a | 2.38 b | 238.89 b | 7.32 c | ||
FYM | 53.47 ab | 57.85 a | 3.18 a | 318.91 a | 10.19 a | |
NPK | 52.00 ab | 57.40 a | 3.05 a | 304.96 a | 10.24 a | |
Salinity | CS | 44.94 a | 59.13 a | 3.03 a | 302.91 a | 9.54 a |
HS | 51.78 a | 55.08 a | 2.66 a | 266.84 a | 9.17 a | |
ANOVA | Df | F | F | F | F | F |
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | 4.18 * | ns | 5.05 ** | 5.05 ** | 19.45 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
CP II | ||||||
Fertilization | BHS | 34.64 b | 57.27 a | 3.30 bc | 330.21 bc | 9.91 a |
COMP | 77.77 a | 80.98 a | 4.16 a | 416.21 a | 8.27 b | |
C | 82.52 a | 3.14 c | 314.81 c | 6.88 c | ||
FYM | 58.93 ab | 70.63 a | 3.94 abc | 394.29 abc | 9.76 a | |
NPK | 61.11 ab | 73.11 a | 4.05 ab | 405.86 ab | 9.45 a | |
Salinity | CS | 65.26 a | 76.30 a | 3.94 a | 393.92 a | 8.83 a |
HS | 50.97 a | 69.51 a | 3.51 a | 350.64 a | 8.88 a | |
ANOVA | Df | F | F | |||
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | 7.26 ** | ns | 5.91 ** | 5.91 ** | 36.14 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
CP III | ||||||
Fertilization | BHS | 47.91 a | 97.84 a | 3.93 ab | 392.70 ab | 9.91 a |
COMP | 60.17 a | 79.50 a | 4.08 a | 408.09 a | 8.27 c | |
C | 91.24 a | 3.46 b | 346.49 b | 6.88 c | ||
FYM | 50.73 a | 70.83 a | 3.99 ab | 399.12 ab | 9.76 ab | |
NPK | 50.46 a | 74.01 a | 4.12 a | 411.75 a | 9.45 b | |
Salinity | CS | 45.57 a | 69.31 a | 3.58 a | 358.57 a | 8.83 a |
HS | 59.07 a | 84.06 a | 4.25 a | 424.69 a | 8.88 a | |
ANOVA | Df | F | F | |||
Salinity | 1 | ns | ns | ns | ns | ns |
Fertilization | 4 | ns | ns | 3.56 * | 3.56 * | 43.59 *** |
Fertilization x Salinity | 4 | ns | ns | ns | ns | ns |
Error | 16 | |||||
Total | 29 |
NUpE | NUEyield | NUEbalance | ||
---|---|---|---|---|
CPI | ||||
Fertilization | BHS | 27.08 a | 72.74 a | 0.92 a |
COMP | 21.15 b | 81.59 a | 0.80 b | |
C | 13.22 c | 77.38 a | ||
FYM | 25.83 ab | 83.68 a | 1.02 a | |
NPK | 25.15 ab | 82.55 a | 0.96 a | |
Salinity | CS | 23.25 a | 82.38 a | 1.00 a |
HS | 21.71 a | 76.79 a | 0.85 b | |
ANOVA | Df | F | F | F |
Salinity | 1 | ns | ns | 42.54 * |
Fertilization | 4 | 70.38 *** | ns | 95.61 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP II | ||||
Fertilization | BHS | 27.25 a | 84.79 a | 1.11 a |
COMP | 19.75 c | 100.73 a | 0.95 b | |
C | 12.79 d | 95.31 a | ||
FYM | 25.95 ab | 96.58 a | 1.20 a | |
NPK | 23.21 b | 96.61 a | 1.10 a | |
Salinity | CS | 23.43 a | 99.73 a | 1.09 a |
HS | 20.38 a | 89.89 a | 0.85 b | |
ANOVA | Df | |||
Salinity | 1 | ns | ns | 40.27 * |
Fertilization | 4 | 68.55 *** | ns | 92.35 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
CP III | ||||
Fertilization | BHS | 28.05 a | 95.89 a | 1.30 a |
COMP | 19.18 c | 98.68 c | 0.90 c | |
C | 12.96 d | 104.20 d | ||
FYM | 25.51 ab | 96.33 ab | 1.19 ab | |
NPK | 22.58 b | 96.59 b | 1.06 b | |
Salinity | CS | 23.38 a | 92.69 a | 1.02 a |
HS | 19.93 a | 103.99 a | 0.98 b | |
ANOVA | Df | |||
Salinity | 1 | ns | ns | 55.20 * |
Fertilization | 4 | 59.66 *** | ns | 95.57 *** |
Fertilization x Salinity | 4 | ns | ns | ns |
Error | 16 | |||
Total | 29 |
NP | NUEecology | ||
---|---|---|---|
CPI | |||
Fertilization | BHS | 2.92 b | 526.96 b |
COMP | 3.32 b | 597.87 b | |
C | 4.45 a | 801.97 a | |
FYM | 3.09 b | 556.68 b | |
NPK | 3.17 b | 572.27 b | |
Salinity | CS | 3.50 a | 630.47 a |
HS | 3.28 a | 591.83 a | |
ANOVA | Df | F | F |
Salinity | 1 | ns | ns |
Fertilization | 4 | 8.57 *** | 8.57 * |
Fertilization x Salinity | 4 | ns | ns |
CP II | |||
Fertilization | BHS | 2.87 b | 516.98 b |
COMP | 3.30 b | 594.77 b | |
C | 4.23 a | 760.75 a | |
FYM | 2.97 b | 534.97 b | |
NPK | 3.22 b | 580.00 b | |
Salinity | CS | 3.29 a | 593.03 a |
HS | 3.34 a | 601.96 a | |
ANOVA | Df | ||
Salinity | 1 | ns | ns |
Fertilization | 4 | 14.96 *** | 14.96 *** |
Fertilization x Salinity | 4 | ns | ns |
CP III | |||
Fertilization | BHS | 2.86 b | 515.54 b |
COMP | 3.32 b | 597.90 b | |
C | 4.18 a | 752.93 a | |
FYM | 2.97 b | 535.34 b | |
NPK | 3.21 b | 578.48 b | |
Salinity | CS | 3.10 a | 558.02 a |
HS | 3.52 a | 634.06 a | |
ANOVA | Df | ||
Salinity | 1 | ns | ns |
Fertilization | 4 | 23.27 *** | 23.27 *** |
Fertilization x Salinity | 4 | ns | ns |
Error | 16 | ||
Total | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folina, A.; Mavroeidis, A.; Stavropoulos, P.; Eisenbach, L.; Kakabouki, I.; Bilalis, D. Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen 2024, 5, 712-731. https://doi.org/10.3390/nitrogen5030047
Folina A, Mavroeidis A, Stavropoulos P, Eisenbach L, Kakabouki I, Bilalis D. Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen. 2024; 5(3):712-731. https://doi.org/10.3390/nitrogen5030047
Chicago/Turabian StyleFolina, Antigolena, Antonios Mavroeidis, Panteleimon Stavropoulos, Lydia Eisenbach, Ioanna Kakabouki, and Dimitrios Bilalis. 2024. "Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators" Nitrogen 5, no. 3: 712-731. https://doi.org/10.3390/nitrogen5030047
APA StyleFolina, A., Mavroeidis, A., Stavropoulos, P., Eisenbach, L., Kakabouki, I., & Bilalis, D. (2024). Comparison of Organic and Inorganic Fertilization in Fenugreek Cultivation Using Nitrogen Indicators. Nitrogen, 5(3), 712-731. https://doi.org/10.3390/nitrogen5030047